Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070401    DOI: 10.1088/0256-307X/31/7/070401
GENERAL |
Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term
Shri Ram, Priyanka**
1Department of Mathematical Sciences, Indian Institute of Technology, Banaras Hindu University, Varanasi 221 005, India
Cite this article:   
Shri Ram, Priyanka 2014 Chin. Phys. Lett. 31 070401
Download: PDF(514KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We deal with Einstein's field equations with a time-decaying cosmological term of the forms (i) Λ = β(ä/a) + α/a2 and (ii) Λ = α/a2, where a is the average scale factor of the universe, α and β are constants for a spatially homogeneous and anisotropic LRS Bianchi type-II spacetime. Exact solutions of the field equations for stiff matter are obtained by applying a special law of variation for the Hubble parameter. Anisotropic cosmological models are presented with a constant negative deceleration parameter which corresponds to the accelerated phase of the present universe. The cosmological constant Λ is obtained as a decreasing function of time that is approaching a small positive value at the present epoch, which is corroborated by the consequences from recent supernovae Ia observations. The physical and kinematical behaviors of the models are also discussed.

Published: 30 June 2014
PACS:  04.20.-q (Classical general relativity)  
  04.20.Jb (Exact solutions)  
  98.80.Jk (Mathematical and relativistic aspects of cosmology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shri Ram
Priyanka

[1] Guth A H 1981 Phys. Rev. D 23 347
[2] Weinberg S 1989 Rev. Mod. Phys. 61 1
[3] Perlmutter S et al 1997 Astrophys. J. 483 565
[4] Riess A G 1998 Astron. J. 116 1009
[5] Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406
[6] Dolgov A D 1983 The Very Early Universe (Cambridge: Cambridge University Press)
[7] Dolgov A D et al 1990 Basics of Modern Cosmology Editions Frontiers
[8] Dolgov A D 1997 Phys. Rev. D 55 5881
[9] Sahni V and Starobinsky 2000 Int. J. Mod. Phys. D 9 373
[10] Linde A D 1974 JETP Lett. 19 183
[11] Chen W and Wu Y S 1990 Phys. Rev. D 41 695
[12] Carvalho et al 1992 Phys. Rev. D 46 2404
[13] Schutzhold R 2002 Phys. Rev. Lett. 89 081302
[14] Schutzhold R 2002 Int. J. Mod. Phys. A 17 4359
[15] Al-Rawaf A S and Taha M O 1996 Gen. Relativ. Gravit. 28 935
[16] Al-Rawaf A S 1998 Mod. Phys. Lett. A 13 429
[17] Overdin J M and Cooperstock F I 1998 Phys. Rev. D 58 043506
[18] Arbab A L and Cosmo J 2003 Antiparticle Phys. 05 8
[19] Arbab A L and Cosmo J 2003 Class. Quantum Grav. 20 93
[20] Cunha J V et al 2002 Astron. Astrophys. 390 809
[21] Asseo E and Sol H 1987 Phys. Rep. 148 307
[22] Lorentz D 1980 Phys. Lett. A 79 19
[23] Hajj-Boutros J 1986 J. Math. Phys. 27 1592
[24] Shanti K and Rao V U M 1991 Astrophys. Space Sci. 179 147
[25] Venkateswarlu R and Reddy D R K 1991 Astrophys. Space Sci. 182 97
[26] Coley A A and Wainright J 1992 Class. Quantum Grav. 9 651
[27] Singh C P and Kumar S 2007 Pramana 68 707
[28] Pradhan A et al 2008 Romannian Reports in Phys. 60 3
[29] Verma M K et al 2011 Romannian J. Phys. 56 616
[30] Tiwari R K et al 2012 Chin. Phys. Lett. 29 010403
[31] Bali R and Swati 2012 Chin. Phys. Lett. 29 080404
[32] Berman M S 1983 Nuovo Cimento B 74 182
[33] Kumar S 2011 Mod. Phys. Lett. A 26 779
[34] Berman M S and Gomide F M 1988 Gen. Relativ. Gravit. 20 191
[35] Johri V B and Desikan K 1994 Gen. Relativ. Gravit. 26 1217
[36] Pradhan A and Vishwakarma A K 2002 Int. J. Pure Appl. Math. 33 1239
[37] Reddy D R K et al 2006 Astrophys. Space Sci. 306 171
[38] Adhav K S et al 2008 Int. J. Theor. Phys. 47 634
[39] Singh J P and Baghel P S 2009 Int. J. Theor. Phys. 48 449
[40] Shri R et al 2009 Mod. Phys. Lett. A 24 1847
[41] Belinski V A et al 1970 Adv. Phys. 19 525
[42] Burd A and Tavakol R 1993 Phys. Rev. D 47 5336
[43] Wu X 2010 Res. Astron. Astrophys. 10 211

Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 070401
[2] Jun Wang, Li-Jia Cao. Gravitational constant in f(R) theories of gravity with non-minimal coupling between matter and geometry[J]. Chin. Phys. Lett., 2018, 35(12): 070401
[3] Ya-Bo Wu, Xue Zhang, Bo-Hai Chen, Nan Zhang, Meng-Meng Wu. Energy Conditions and Constraints on the Generalized Non-Local Gravity Model[J]. Chin. Phys. Lett., 2017, 34(7): 070401
[4] M. Azam, S. A. Mardan, M. A. Rehman. The Stability of Some Viable Stars and Electromagnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 070401
[5] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 070401
[6] Si-Yu Wu, Ya-Bo Wu, Yue-Yue Zhao, Xue Zhang, Cheng-Yuan Zhang, Bo-Hai Chen. Consistency Conditions and Constraints on Generalized $f(R)$ Gravity with Arbitrary Geometry-Matter Coupling[J]. Chin. Phys. Lett., 2016, 33(03): 070401
[7] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 070401
[8] LU Jun-Li. Relation of Oscillation Frequency to the Equation of State of Relativistic Stars[J]. Chin. Phys. Lett., 2014, 31(11): 070401
[9] WU Ya-Bo, TONG Hai-Dan, YANG Hao, LU Jian-Bo, ZHAO Yue-Yue, LU Jun-Wang, ZHANG Xue. Reconstruction of New Holographic Chaplygin Gas Model with Viscosity[J]. Chin. Phys. Lett., 2014, 31(2): 070401
[10] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 070401
[11] Bob Osano. The Decoupling of Scalar-Modes from a Linearly Perturbed Dust-Filled Bianchi Type-I Model[J]. Chin. Phys. Lett., 2014, 31(1): 070401
[12] WU Ya-Bo, ZHAO Yue-Yue, LU Jian-Bo, LI Jian, ZHANG Wen-Xin, CHANG Hong. The Generalized f(R) Model with Coupling in 5D Spacetime[J]. Chin. Phys. Lett., 2013, 30(6): 070401
[13] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 070401
[14] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 070401
[15] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 070401
Viewed
Full text


Abstract