Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070304    DOI: 10.1088/0256-307X/31/7/070304
GENERAL |
Adiabatic Deutsch–Jozsa Problem Solved by Modifying the Initial Hamiltonian
SUN Jie1,2, LU Song-Feng1**, LIU Fang1, ZHOU Qing1, ZHANG Zhi-Gang1
1School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074
2School of Automation, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
SUN Jie, LU Song-Feng, LIU Fang et al  2014 Chin. Phys. Lett. 31 070304
Download: PDF(433KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an alternate adiabatic evolution for the Deutsch–Jozsa problem. The biggest difference of our adiabatic evolution constructed here with those appearing before is that an alternate initial Hamiltonian is used for the adiabatic evolution, with which the evolution task can be finished in O(1) time complexity. Our construction mostly resembles the one discussed by Das et al. [Phys. Rev. A 65 (2002) 062310], except for the initial system Hamiltonian of the adiabatic algorithm.
Published: 30 June 2014
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070304       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Jie
LU Song-Feng
LIU Fang
ZHOU Qing
ZHANG Zhi-Gang
[1] Deutsch D and Jozsa R 1992 Proc. R. Soc. London Sect. A 439 553
[2] Grover L K 1997 Phys. Rev. Lett. 79 325
[3] Shor P W 1999 SIAM Rev. 41 303
[4] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[5] Aharonov D, Dam W v, Kempe J, Landau Z, Lloyd S and Regev O 2007 SIAM J. Comput. 37 166
[6] Mizel A, Lidar D A and Mitchell M 2007 Phys. Rev. Lett. 99 070502
[7] Lidar D A 2008 Phys. Rev. Lett. 100 160506
[8] Childs A M, Farhi E and Preskill J 2001 Phys. Rev. A 65 012322
[9] Gaitan F and Clark L 2012 Phys. Rev. Lett. 108 010501
[10] Xu N Y, Zhu J, Lu D W, Zhou X Y, Peng X H and Du J F 2012 Phys. Rev. Lett. 108 130501
[11] Garnerone S, Zanardi P and Lidar D A 2012 Phys. Rev. Lett. 108 230506
[12] Frees A, Gamble J K, Rudinger K, Bach E, Friesen M, Joynt R and Coppersmith S N 2013 Phys. Rev. A 88 032307
[13] Somma R D, Nagaj D and Kieferová M 2012 Phys. Rev. Lett. 109 050501
[14] Messiah A 1999 Quantum Mechanics 1st edn (New York: Dover) pp 744–763
[15] Das S, Kobes R and Kunstatter G 2002 Phys. Rev. A 65 062310
[16] Sarandy M S and Lidar D A 2005 Phys. Rev. Lett. 95 250503
[17] Wei Z H and Ying M S 2006 Phys. Lett. A 354 271
[18] Sun J, Lu S F, Liu F and Gao C 2014 Quantum Inf. Process. 13 731
[19] Roland J and Cerf N J 2002 Phys. Rev. A 65 042308
[20] Duan Q H, Zhang S, Wu W and Chen P X 2013 Chin. Phys. Lett. 30 010302
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 070304
[2] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 070304
[3] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 070304
[4] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 070304
[5] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 070304
[6] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 070304
[7] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 070304
[8] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 070304
[9] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 070304
[10] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 070304
[11] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070304
[12] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 070304
[13] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 070304
[14] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 070304
[15] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 070304
Viewed
Full text


Abstract