GENERAL |
|
|
|
|
Adiabatic Deutsch–Jozsa Problem Solved by Modifying the Initial Hamiltonian |
SUN Jie1,2, LU Song-Feng1**, LIU Fang1, ZHOU Qing1, ZHANG Zhi-Gang1 |
1School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 2School of Automation, Huazhong University of Science and Technology, Wuhan 430074
|
|
Cite this article: |
SUN Jie, LU Song-Feng, LIU Fang et al 2014 Chin. Phys. Lett. 31 070304 |
|
|
Abstract We present an alternate adiabatic evolution for the Deutsch–Jozsa problem. The biggest difference of our adiabatic evolution constructed here with those appearing before is that an alternate initial Hamiltonian is used for the adiabatic evolution, with which the evolution task can be finished in O(1) time complexity. Our construction mostly resembles the one discussed by Das et al. [Phys. Rev. A 65 (2002) 062310], except for the initial system Hamiltonian of the adiabatic algorithm.
|
|
Published: 30 June 2014
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.-a
|
(Quantum information)
|
|
|
|
|
[1] Deutsch D and Jozsa R 1992 Proc. R. Soc. London Sect. A 439 553 [2] Grover L K 1997 Phys. Rev. Lett. 79 325 [3] Shor P W 1999 SIAM Rev. 41 303 [4] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472 [5] Aharonov D, Dam W v, Kempe J, Landau Z, Lloyd S and Regev O 2007 SIAM J. Comput. 37 166 [6] Mizel A, Lidar D A and Mitchell M 2007 Phys. Rev. Lett. 99 070502 [7] Lidar D A 2008 Phys. Rev. Lett. 100 160506 [8] Childs A M, Farhi E and Preskill J 2001 Phys. Rev. A 65 012322 [9] Gaitan F and Clark L 2012 Phys. Rev. Lett. 108 010501 [10] Xu N Y, Zhu J, Lu D W, Zhou X Y, Peng X H and Du J F 2012 Phys. Rev. Lett. 108 130501 [11] Garnerone S, Zanardi P and Lidar D A 2012 Phys. Rev. Lett. 108 230506 [12] Frees A, Gamble J K, Rudinger K, Bach E, Friesen M, Joynt R and Coppersmith S N 2013 Phys. Rev. A 88 032307 [13] Somma R D, Nagaj D and Kieferová M 2012 Phys. Rev. Lett. 109 050501 [14] Messiah A 1999 Quantum Mechanics 1st edn (New York: Dover) pp 744–763 [15] Das S, Kobes R and Kunstatter G 2002 Phys. Rev. A 65 062310 [16] Sarandy M S and Lidar D A 2005 Phys. Rev. Lett. 95 250503 [17] Wei Z H and Ying M S 2006 Phys. Lett. A 354 271 [18] Sun J, Lu S F, Liu F and Gao C 2014 Quantum Inf. Process. 13 731 [19] Roland J and Cerf N J 2002 Phys. Rev. A 65 042308 [20] Duan Q H, Zhang S, Wu W and Chen P X 2013 Chin. Phys. Lett. 30 010302 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|