Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070303    DOI: 10.1088/0256-307X/31/7/070303
GENERAL |
Damping in a Squeezed Bath and Its Time Evolution through the Complete Class of Gaussian Quasi-Distributions
Mohammad Reza Bazrafkan**, Seyed Mahmoud Ashrafi, Fahimeh Naghdi
Physics Department, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
Cite this article:   
Mohammad Reza Bazrafkan, Seyed Mahmoud Ashrafi, Fahimeh Naghdi 2014 Chin. Phys. Lett. 31 070303
Download: PDF(440KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By virtue of the thermo-entangled states representation of the density operator and using the dissipative interaction picture, we solve the master equation of a driven damped harmonic oscillator in a squeezed bath. We show that the essential part of the dynamics can be expressed by the convolution of the initial Wigner function with a special kind of normalized Gaussian in the phase space and relate the dynamics with the change of Gaussian ordering of the density operator.
Published: 30 June 2014
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mohammad Reza Bazrafkan
Seyed Mahmoud Ashrafi
Fahimeh Naghdi
[1] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[2] Walls D F and Milburn G J 1994 Quantum Optics (New York: Springer)
[3] Cahill K and Glauber R 1969 Phys. Rev. 177 1857
[4] Cahill K and Glauber R 1969 Phys. Rev. 177 1882
[5] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[6] Fan H Y and Fan Y 1996 Phys. Rev. A 54 958
[7] Fan H Y and Lu H L 2007 Mod. Phys. Lett. B 21 183
[8] Hu L Y and Fan H Y 2009 Int. J. Theor. Phys. 48 3396
[9] Fan H Y and Hu L Y 2008 Opt. Commun. 281 5571
[10] Fan H Y and Fan Y 2002 J. Phys. A 35 6873
[11] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242
[12] Hu L Y and Fan H Y 2009 Opt. Commun. 282 4379
[13] Fan H Y and Hu L Y 2009 Commun. Theor. Phys. 51 506
[14] Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Science and Technology Press)
[15] Hu L Y, Wang Q, Wang Z S and Xu X X 2012 Int. J. Theor. Phys. 51 331
[16] Wunsche A 1996 Quantum Semiclass. Opt. 8 343
[17] Wunsche A 1999 J. Opt. B: Quantum Semiclass. Opt. 1 R11
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 070303
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 070303
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 070303
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 070303
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 070303
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 070303
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 070303
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 070303
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 070303
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 070303
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 070303
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 070303
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 070303
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 070303
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 070303
Viewed
Full text


Abstract