GENERAL |
|
|
|
|
A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory |
LI Fang-Yi1,2, YIN Zhen-Qiang1,2, LI Hong-Wei1,2, CHEN Wei1,2**, WANG Shuang1,2**, WEN Hao3, ZHAO Yi-Bo4, HAN Zheng-Fu1,2 |
1Key Lab of Quantum Information, University of Science and Technology of China, Hefei 230026 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 3Information Engineering College, Zhejiang University of Technology, Hangzhou 310023 4Anhui Qasky Quantum Science and Technology Co. Ltd., Wuhu 241002
|
|
Cite this article: |
LI Fang-Yi, YIN Zhen-Qiang, LI Hong-Wei et al 2014 Chin. Phys. Lett. 31 070302 |
|
|
Abstract Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.
|
|
Published: 30 June 2014
|
|
PACS: |
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
|
|
|
[1] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) p 175 [3] Ekert A K 1991 Phys. Rev. Lett. 67 661 [4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [5] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 [6] Gottesman D, Lo H K, Lütkenhaus No and Preskill J 2004 Quantum Inf. Comput. 4 325 [7] Boileau J C 2005 Phys. Rev. Lett. 94 040503 [8] Wen K, Tamaki K and Yamamoto Y 2009 Phys. Rev. Lett. 103 170503 [9] Yin Z Q et al 2010 Phys. Rev. A 82 042335 [10] Yin Z Q et al 2012 Phys. Rev. A 86 022313 [11] Yin Z Q et al 2013 Quantum Inf. Comput. 13 0827 [12] Yin Z Q et al 2013 Phys. Rev. A 88 062322 [13] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502 [14] Peng C Z, Zhang J, Yang D et al 2007 Phys. Rev. Lett. 98 010505 [15] Rosenberg D, Harrington J W, Rice P R et al 2007 Phys. Rev. Lett. 98 010503 [16] Schmitt-Manderbach T 2007 Phys. Rev. Lett. 98 010504 [17] Zhao Y, Qi B, Ma X F, Lo H K and Qian L 2006 Proceedings of IEEE International Symposium on Information Theory p 2094 [18] Yuan L, Sharpe A W and Shields A J 2007 Appl. Phys. Lett. 90 011118 [19] Yin Z Q et al 2008 Chin. Phys. Lett. 25 3547 [20] Wang S et al 2012 Opt. Lett. 37 1008 [21] Frolich B, Dynes J F, Lucamarini M, Sharpe A W, Z Yuan and Shields A J 2013 Nature 501 69 [22] Zhao Y, Fung Chi-Hang F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333 [23] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686 [24] Acin A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501 [25] Pironio S, Acin A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021 [26] Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501 [27] Liu Y et al 2013 Phys. Rev. Lett. 111 130502 [28] Silva T F et al 2013 Phys. Rev. A 88 052303 [29] Tang Z Y et al 2013 arXiv:1306.6134 [quant-ph] [30] Yin Z Q et al 2014 Quantum Inf. Process. 13 1237 [31] Li M et al 2014 Opt. Lett. 39 880 [32] Devetak I and Winter A 2005 Proc. R. Soc. London Ser. A 461 207 [33] Scarani V 2009 Rev. Mod. Phys. 81 1301 [34] Caves C M, Fuchs C A and Schack R 2002 J. Math. Phys. 43 4537 [35] Christandl M and Renner R 2009 Phys. Rev. Lett. 102 020504 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|