Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070302    DOI: 10.1088/0256-307X/31/7/070302
GENERAL |
A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory
LI Fang-Yi1,2, YIN Zhen-Qiang1,2, LI Hong-Wei1,2, CHEN Wei1,2**, WANG Shuang1,2**, WEN Hao3, ZHAO Yi-Bo4, HAN Zheng-Fu1,2
1Key Lab of Quantum Information, University of Science and Technology of China, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026
3Information Engineering College, Zhejiang University of Technology, Hangzhou 310023
4Anhui Qasky Quantum Science and Technology Co. Ltd., Wuhu 241002
Cite this article:   
LI Fang-Yi, YIN Zhen-Qiang, LI Hong-Wei et al  2014 Chin. Phys. Lett. 31 070302
Download: PDF(432KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.
Published: 30 June 2014
PACS:  03.67.Dd (Quantum cryptography and communication security)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Fang-Yi
YIN Zhen-Qiang
LI Hong-Wei
CHEN Wei
WANG Shuang
WEN Hao
ZHAO Yi-Bo
HAN Zheng-Fu
[1] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) p 175
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[5] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[6] Gottesman D, Lo H K, Lütkenhaus No and Preskill J 2004 Quantum Inf. Comput. 4 325
[7] Boileau J C 2005 Phys. Rev. Lett. 94 040503
[8] Wen K, Tamaki K and Yamamoto Y 2009 Phys. Rev. Lett. 103 170503
[9] Yin Z Q et al 2010 Phys. Rev. A 82 042335
[10] Yin Z Q et al 2012 Phys. Rev. A 86 022313
[11] Yin Z Q et al 2013 Quantum Inf. Comput. 13 0827
[12] Yin Z Q et al 2013 Phys. Rev. A 88 062322
[13] Zhao Y, Qi B, Ma X, Lo H K and Qian L 2006 Phys. Rev. Lett. 96 070502
[14] Peng C Z, Zhang J, Yang D et al 2007 Phys. Rev. Lett. 98 010505
[15] Rosenberg D, Harrington J W, Rice P R et al 2007 Phys. Rev. Lett. 98 010503
[16] Schmitt-Manderbach T 2007 Phys. Rev. Lett. 98 010504
[17] Zhao Y, Qi B, Ma X F, Lo H K and Qian L 2006 Proceedings of IEEE International Symposium on Information Theory p 2094
[18] Yuan L, Sharpe A W and Shields A J 2007 Appl. Phys. Lett. 90 011118
[19] Yin Z Q et al 2008 Chin. Phys. Lett. 25 3547
[20] Wang S et al 2012 Opt. Lett. 37 1008
[21] Frolich B, Dynes J F, Lucamarini M, Sharpe A W, Z Yuan and Shields A J 2013 Nature 501 69
[22] Zhao Y, Fung Chi-Hang F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[23] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[24] Acin A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[25] Pironio S, Acin A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021
[26] Rubenok A, Slater J A, Chan P, Lucio-Martinez I and Tittel W 2013 Phys. Rev. Lett. 111 130501
[27] Liu Y et al 2013 Phys. Rev. Lett. 111 130502
[28] Silva T F et al 2013 Phys. Rev. A 88 052303
[29] Tang Z Y et al 2013 arXiv:1306.6134 [quant-ph]
[30] Yin Z Q et al 2014 Quantum Inf. Process. 13 1237
[31] Li M et al 2014 Opt. Lett. 39 880
[32] Devetak I and Winter A 2005 Proc. R. Soc. London Ser. A 461 207
[33] Scarani V 2009 Rev. Mod. Phys. 81 1301
[34] Caves C M, Fuchs C A and Schack R 2002 J. Math. Phys. 43 4537
[35] Christandl M and Renner R 2009 Phys. Rev. Lett. 102 020504
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 070302
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 070302
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 070302
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 070302
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070302
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 070302
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 070302
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 070302
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 070302
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 070302
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 070302
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 070302
Viewed
Full text


Abstract