Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 070202    DOI: 10.1088/0256-307X/31/7/070202
GENERAL |
A Hierarchy of New Nonlinear Evolution Equations and Their Bi-Hamiltonian Structures
GENG Xian-Guo, WANG Hui**
School of Mathematics and statistics, Zhengzhou University, Zhengzhou 450001
Cite this article:   
GENG Xian-Guo, WANG Hui 2014 Chin. Phys. Lett. 31 070202
Download: PDF(386KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A hierarchy of new nonlinear evolution equations associated with a 3×3 matrix spectral problem with four potentials is proposed, in which two typical members are a new coupled Burgers equation and a new coupled KdV equation. The bi-Hamiltonian structures for the hierarchy of nonlinear evolution equations are established by using the trace identity.
Published: 30 June 2014
PACS:  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/070202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/070202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GENG Xian-Guo
WANG Hui
[1] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA:SIAM)
[2] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[3] Hu X B 1997 J. Phys. A 30 619
[4] Hu H C, Lou S Y and Liu Q P 2003 Chin. Phys. Lett. 20 1413
[5] Qu C Z, Yao R X and Li Z B 2004 Chin. Phys. Lett. 21 2077
[6] Zhu Z N 2007 J. Phys. A 40 7707
[7] Geng X G and Li F 2009 Chin. Phys. Lett. 26 050201
[8] Kang J and Qu C Z 2012 Chin. Phys. Lett. 29 070301
[9] Darvishi M T and Khani F 2012 Chin. Phys. Lett. 29 094101
[10] Geng X G, Wu L H and He G L 2013 J. Nonlinear Sci. 23 527
[11] Zhu J Y and Geng X G 2013 Chin. Phys. Lett. 30 080204
[12] Su T, Dai H H and Geng X G 2013 Chin. Phys. Lett. 30 060201
[13] Zhai Y Y, Geng X G and He G L 2014 Chin. Phys. B 23 060201
[14] Wang C C, Liao W J and Hsu Y S 2012 Appl. Math. Comput. 219 1031
[15] Garder C S 1971 J. Math. Phys. 12 1548
[16] Konno K and Ichikawa Y H 1974 J. Phys. Soc. Jpn. 37 1631
[17] Dodd R K, Eilbeckj C and Gibbon D J 1982 Solitons and Nonlinear Wave Equations (London: Academic Press)
[18] Narayanamurti V and Varma C M 1970 Phys. Rev. Lett. 25 1105
[19] Tappert F D and Varma C M 1970 Phys. Rev. Lett. 25 1108
[20] Tu G Z 1989 J. Phys. A 22 2375
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 070202
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 070202
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 070202
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 070202
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 070202
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 070202
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 070202
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 070202
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 070202
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 070202
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 070202
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 070202
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 070202
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 070202
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 070202
Viewed
Full text


Abstract