Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 068901    DOI: 10.1088/0256-307X/31/6/068901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Mixing Assortativity on Extreme Events in Complex Networks
LING Xiang**
School of Transportation Engineering, Hefei University of Technology, Hefei 230009
Cite this article:   
LING Xiang 2014 Chin. Phys. Lett. 31 068901
Download: PDF(678KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effect of mixing assortativity on the occurrence of extreme events in complex networks. The bias random walk model is adopted with a preferential transition probability tuned by a parameter α. We derive exact expressions for the stationary distribution probability and for the occurrence probability of extreme events. They reveal that the occurrence of extreme events strongly depends on the mixing assortativity of the network. It is shown that, for non-assortative (rk=0), assortative (rk=0.15) and disassortative (rk=?0.15) scale-free networks, the minimal occurrence of extreme events will happen at α=?1.0, α=?0.6 andα=0.2, respectively.
Published: 26 May 2014
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.20.Hh (World Wide Web, Internet)  
  89.40.-a (Transportation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/068901       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/068901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LING Xiang
[1] Watts D J and Strogaz S H 1998 Nature 393 440
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Barabási A L and Albert R 2002 Rev. Mod. Phys. 74 47
[4] Newman M E J 2003 SIAM Rev. 45 167
[5] Hu M B, Lau H Y K and Ling X 2012 Chin. Phys. Lett. 29 128902
[6] Arenas A, Díaz-Guilera A and Guimerá R 2001 Phys. Rev. Lett. 86 3196
[7] Ohira T and Sawatari R 1998 Phys. Rev. E 58 193
[8] De Martino D, DallAsta L, Bianconi G and Marsili M 2009 Phys. Rev. E 79 015101(R)
[9] Zhu Z Q, Jin X L and Huang Z L 2012 Chin. Phys. Lett. 29 038901
[10] De Menezes M A and Barabási A L 2004 Phys. Rev. Lett. 92 028701
[11] Meloni S, Gómez-Garde?es J, Latora V and Moreno Y 2008 Phys. Rev. Lett. 100 208701
[12] Duch J and Arenas A 2006 Phys. Rev. Lett. 96 218702
[13] Shen Y 2013 Chin. Phys. B 22 058902
[14] Cai J and Yu S Z 2013 Acta Phys. Sin. 62 058901 (in Chinese)
[15] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[16] Ling X, Hu M B and Long J C 2013 Chin. Phys. B 22 018904
[17] Wang W X, Wang B H, Yin C Y, Xie Y B and Zhou T 2006 Phys. Rev. E 73 026111
[18] Du W B, Wu Z X and Cai K Q 2013 Physica A 392 3505
[19] Du W B, Cao X B and Chen C L 2011 Physica A 390 3982
[20] Cao X B, Du W B and Chen C L 2011 Chin. Phys. Lett. 28 058902
[21] Hu M B, Jiang R, Wu Y H, Wang W X and Wu Q S 2008 Eur. Phys. J. B 63 127
[22] Hu M B, Jiang R, Wang R L and Wu Q S 2009 Phys. Lett. A 373 2007
[23] Kishore V, Santhanam M S and Amritkar R E 2011 Phys. Rev. Lett. 106 188701
[24] Ling X, Hu M B, Ding J X, Shi Q and Jiang R 2013 Eur. Phys. J. B 86 146
[25] Sood V and Grassberger P 2007 Phys. Rev. Lett. 99 098701
[26] Lee S, Yook S H and Kim Y 2009 Phys. Rev. E 80 017102
[27] Fronczak A and Fronczak P 2009 Phys. Rev. E 80 016107
[28] Anteneodo C and Morgado W A M 2007 Phys. Rev. Lett. 99 180602
[29] Xulvi-Brunet R and Sokolov I M 2004 Phys. Rev. E 70 066102
[30] Newman M E J 2002 Phys. Rev. Lett. 89 208701
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 068901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 068901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 068901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 068901
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 068901
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 068901
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 068901
[8] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 068901
[9] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 068901
[10] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 068901
[11] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 068901
[12] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 068901
[13] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 068901
[14] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 068901
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 068901
Viewed
Full text


Abstract