Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 068701    DOI: 10.1088/0256-307X/31/6/068701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Ion Binding Energies Determining Functional Transport of ClC Proteins
YU Tao1**, GUO Xu1, ZOU Xian-Wu2, SANG Jian-Ping1,2**
1Department of Physics, Jianghan University, Wuhan 430056
2Department of Physics, Wuhan University, Wuhan 430072
Cite this article:   
YU Tao, GUO Xu, ZOU Xian-Wu et al  2014 Chin. Phys. Lett. 31 068701
Download: PDF(724KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl? ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl? at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl? pathway, they are still part contributors for the Cl? functional transport. This work provides a guide rule to estimate the importance of Cl? at the binding sites and how chloride ions have influences on the function of ClC proteins.
Published: 26 May 2014
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.14.ep (Membrane proteins)  
  87.16.Vy (Ion channels)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/068701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/068701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Tao
GUO Xu
ZOU Xian-Wu
SANG Jian-Ping
[1] Accardi A and picollo A 2010 Biochim. Biophys. Acta 1798 1457
[2] Jentsch T J 2008 Crit. Rev. Biochem. Mol. Biol. 43 3
[3] Miller C 2006 Nature 440 484
[4] Jentsch T J, Neagoe I and Scheel O 2005 Curr. Opin. Neurobiol. 15 319
[5] Achcroft F, Gadsby D and Miller C 2009 Philos. Trans. R. Soc. B 364 145
[6] Lourdel S, Grand T, Burgos J, González W, Sepúlveda F V and Teulon J 2012 Eur. J. Physiol. 463 247
[7] Faraldo-Gómez J D and Roux B 2004 J. Mol. Biol. 339 981
[8] Maduke M, Pheasant D J and Miller C 1999 J. Gen. Physiol. 114 713
[9] Accardi A, Kolmakova-Partensky L, Williams C and Miller C 2004 J. Gen. Physiol. 123 109
[10] Dutzler R, Campbell E B, Cadene M, Chait B T and MacKinnon R 2002 Nature 415 287
[11] Dutzler R, Campbell E B and MacKinnon R 2003 Science 300 108
[12] Accardi A and Miller C 2004 Nature 427 803
[13] Ko Y J and Jo W H 2010 Biophys. J. 98 2163
[14] Accardi A, Lobet S, Williams C, Miller C and Dutzler R 2006 J. Mol. Biol. 362 691
[15] Walden M, Accardi A, Wu F, Xu C, Williams C and Miller C 2007 J. Gen. Physiol. 129 317
[16] Nguitragool W and Miller C 2007 Proc. Natl. Acad. Sci. USA 104 20659
[17] Kuang Z, Liu A and Beck T L 2008 Proteins 22 75
[18] Kuang Z, Mahankali U and Beck T L 2007 Proteins 68 26
[19] Jayaram H, Accardi A, Wu F, Williams C and Miller C 2008 Proc. Natl. Acad. Sci. USA 105 11194
[20] Miller C and Nguitragool W 2009 Philos. Trans. R. Soc. B 364 175
[21] Picollo A, Malvezzi M, Houtman J C D and Accardi A 2009 Nat. Struct. Mol. Biol. 16 1294
[22] Picollo A, Xu Y, Johner N, Bernèche S and Accardi A 2012 Nat. Struct. Mol. Biol. 19 525
[23] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[24] Mackerell Jr A D, Bashford D, Bellett M, Dunbrack R L, Evanseck Jr J D, Field M J and Fischer S 1998 J. Phys. Chem. B 102 3586
[25] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L and Schulten K 2005 J. Comput. Chem. 26 1781
[26] Davis M E and McCammon J A 1990 Chem. Rev. 90 509
[27] Honig B and Nicholls A 1995 Science 268 1144
[28] Holst M and Saied F 1993 J. Comput. Chem. 14 105
Related articles from Frontiers Journals
[1] Nan Zhang, Ming-Ru Li, Hui-Ting Xu, and Feng-Shou Zhang. Polymorphism and Flexibility of DNA in Alcohols[J]. Chin. Phys. Lett., 2020, 37(8): 068701
[2] Dang-Xin Mao, Xiao-Gang Wang, Guo-Quan Zhou, Song-Wei Zeng, Liang Chen, Jun-Lang Chen, Chao-Qing Dai. Manipulating the Flipping of Water Dipoles in Carbon Nanotubes[J]. Chin. Phys. Lett., 2019, 36(10): 068701
[3] Yi-Zhao Geng, Hui Zhang, Gang Lyu, Qing Ji. Initiation Mechanism of Kinesin's Neck Linker Docking Process[J]. Chin. Phys. Lett., 2017, 34(2): 068701
[4] LI Zong-Chao, DUAN Li-Li, FENG Guo-Qiang, ZHANG Qing-Gang. All-Atom Direct Folding Simulation for Proteins Using the Accelerated Molecular Dynamics in Implicit Solvent Model[J]. Chin. Phys. Lett., 2015, 32(11): 068701
[5] GENG Yi-Zhao, ZHANG Hui, JI Qing, YAN Shi-Wei. Locking Function of a Key Residue in Kinesin's Gating Mechanism[J]. Chin. Phys. Lett., 2014, 31(04): 068701
[6] QI Wen-Peng, LEI Xiao-Ling** . DNA Conformational Variations Induced by Stretching 3'5'-Termini Studied by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2011, 28(4): 068701
[7] Shu-Xia Liu, Shi-Wei Yan. Mechanism of Competition between Nutlin3 and p53 for Binding with Mdm2[J]. Chin. Phys. Lett., 2017, 34(11): 068701
Viewed
Full text


Abstract