Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 068501    DOI: 10.1088/0256-307X/31/6/068501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Properties of Heat Generation in a Double Quantum Dot
ZHOU Li-Ling1**, LI Yong-Jun2, HU Hua1
1Department of Physics, Jiujiang University, Jiujiang 332005
2College of Electronic and Information Engineering, Jiujiang University, Jiujiang 332005
Cite this article:   
ZHOU Li-Ling, LI Yong-Jun, HU Hua 2014 Chin. Phys. Lett. 31 068501
Download: PDF(697KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electronic-current-induced heat generation in a double quantum dot connected by two normal leads. The dots are coupled in series with a coupling strength td. It is found that, at zero temperature and weak dot-lead coupling, td affects the heating and current heavily. In particular, the effects on the heat generation and on the current are quite different. For example, at a heating valley the current can exhibit a deep valley, a plateau, or a high peak depending on td. As a result, we can find an ideal working condition, large current while small heating, for the double dots system by tuning the interdot coupling strength.
Published: 26 May 2014
PACS:  85.35.Gv (Single electron devices)  
  71.38.-k (Polarons and electron-phonon interactions)  
  73.23.-b (Electronic transport in mesoscopic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/068501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/068501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Li-Ling
LI Yong-Jun
HU Hua
[1] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Science 336 202
[2] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V and Yacoby A 2011 Nat. Phys. 7 109
[3] Bluhm H, Foletti S, Mahalu D, Umansky V and Yacoby A 2010 Phys. Rev. Lett. 105 216803
[4] Folleti S, Bluhm H, Mahalu D, Umansky V and Yacoby A 2009 Nat. Phys. 5 903
[5] Giavaras G, Lambert N and Nori F 2013 Phys. Rev. B 87 115416
[6] Breyel D and Komnik A 2011 Phys. Rev. B 84 155305
[7] Kubo T, Ichigo Y and Tokura Y 2011 Phys. Rev. B 83 235310
[8] Chorley S J, Giavaras G, Wabnig J, Jones G A C, Smith C G, Briggs G A D and Buitelaar M R 2011 Phys. Rev. Lett. 106 206801
[9] Datta S, Wang S D, Tilmaciu C, Flahaut E, Marty L, Grifoni M and Wernsdorfer W 2011 Phys. Rev. B 84 035408
[10] Koh T S, Simmons C B, Eriksson M A, Coppersmith S N and Friesen M 2011 Phys. Rev. Lett. 106 186801
[11] Grap S, Andergassen S, Paaske J and Meden V 2011 Phys. Rev. B 83 115115
[12] Ueda A, Entin-Wohlman O, Eto M and Aharony A 2010 Phys. Rev. B 82 245317
[13] Jouravlev O N and Nazarov Y V 2006 Phys. Rev. Lett. 96 176804
[14] Brusheim P and Xu H Q 2006 Phys. Rev. B 73 045313
[15] Fujisawa T, Oosterkamp T H, Wiel W G, Broer B W, Aguado R, Tarucha S and Kouwenhoven L P 1998 Science 282 932
[16] Brandes T and Kramer B 1999 Phys. Rev. Lett. 83 3021
[17] Zhong Y L, Sergeev A, Chen C D and Lin J J 2010 Phys. Rev. Lett. 104 206803
[18] Ueda A and Eto M 2006 Phys. Rev. B 73 235353
[19] Huang Z F, Xu B Q, Chen Y C, Ventra M D and Tao N J 2006 Nano Lett. 6 1240
Huang Z F, Chen F, Dagosta R, Bennett P A, Ventra M D and Tao N J 2007 Nat. Nanotechnol. 2 698
[20] Chen Y C, Zwolak M and Ventra M D 2003 Nano Lett. 3 1691
Chen Y C, Zwolak M and Ventra M D 2005 Nano Lett. 5 621
[21] Sun Q f and Xie X C 2007 Phys. Rev. B 75 155306
Liu J, Song J T, Sun Q F and Xie X C 2009 Phys. Rev. B 79 161309
Wang J S, Wang J and Lu J T 2008 Eur. Phys. J. B 62 381
[22] Ji M, Zhao K, Du G, Kang J F, Han R Q and Liu X Y 2008 Chin. Phys. B 17 1869
[23] Zhu H T, Lou Q H, Qi Y F, Ma H X, Dong J X and Wei Y R 2005 Acta Phys. Sin. 54 5648 (in Chinese)
[24] Zhou L L 2011 Chin. Phys. Lett. 28 128504
[25] Fransson J and Zhu J X 2008 Phys. Rev. B 78 113307
[26] Mahan G D 1990 Many-Particle Physics (New York: Springer)
[27] Wingreen N S, Jauho A P and Meir Y 1993 Phys. Rev. B 48 8487
Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[28] Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324
[29] Tagani M B and Soleimani H R 2012 arXiv:1204.2162 [cond-mat]
Related articles from Frontiers Journals
[1] Zhanbin Bai, Xiangkai Liu, Zhen Lian, Kangkang Zhang, Guanghou Wang, Su-Fei Shi, Xiaodong Pi, Fengqi Song. A Silicon Cluster Based Single Electron Transistor with Potential Room-Temperature Switching[J]. Chin. Phys. Lett., 2018, 35(3): 068501
[2] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 068501
[3] JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors[J]. Chin. Phys. Lett., 2014, 31(06): 068501
[4] XIAO Zhi-Hui, WU Xiao-Ming, HUA Yu-Lin, WANG Li, BI Wen-Tao, BAI Juan-Juan, MU Xue, YIN Shou-Gen. Improvement of the Injection and Transport Characteristics of Electrons in Organic Light-Emitting Diodes by Utilizing a NaCl N-Doped Layer[J]. Chin. Phys. Lett., 2014, 31(04): 068501
[5] C. Valverde, H. C. B. de Oliveira, A. T. Avelar, and B. Baseia. Controlling Excitation Inversion of a Cooper Pair Box Interacting with a Nanomechanical Resonator[J]. Chin. Phys. Lett., 2012, 29(8): 068501
[6] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 068501
[7] LI Jing, CHEN Zhi-De. Squeezing Effect of a Nanomechanical Resonator Coupled to a Two-Level System: an Equilibrium Approach[J]. Chin. Phys. Lett., 2009, 26(3): 068501
[8] LIU Yu-Min, YU Zhong-Yuan, REN Xiao-Min. Influence of Strain-Reducing Layer on Strain Distribution of Self-Organized InAs/GaAs Quantum Dot and Redshift of Photoluminescence Wavelength[J]. Chin. Phys. Lett., 2008, 25(5): 068501
Viewed
Full text


Abstract