CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Properties of Heat Generation in a Double Quantum Dot |
ZHOU Li-Ling1**, LI Yong-Jun2, HU Hua1 |
1Department of Physics, Jiujiang University, Jiujiang 332005 2College of Electronic and Information Engineering, Jiujiang University, Jiujiang 332005
|
|
Cite this article: |
ZHOU Li-Ling, LI Yong-Jun, HU Hua 2014 Chin. Phys. Lett. 31 068501 |
|
|
Abstract We investigate the electronic-current-induced heat generation in a double quantum dot connected by two normal leads. The dots are coupled in series with a coupling strength td. It is found that, at zero temperature and weak dot-lead coupling, td affects the heating and current heavily. In particular, the effects on the heat generation and on the current are quite different. For example, at a heating valley the current can exhibit a deep valley, a plateau, or a high peak depending on td. As a result, we can find an ideal working condition, large current while small heating, for the double dots system by tuning the interdot coupling strength.
|
|
Published: 26 May 2014
|
|
PACS: |
85.35.Gv
|
(Single electron devices)
|
|
71.38.-k
|
(Polarons and electron-phonon interactions)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
|
|
|
[1] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Science 336 202 [2] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V and Yacoby A 2011 Nat. Phys. 7 109 [3] Bluhm H, Foletti S, Mahalu D, Umansky V and Yacoby A 2010 Phys. Rev. Lett. 105 216803 [4] Folleti S, Bluhm H, Mahalu D, Umansky V and Yacoby A 2009 Nat. Phys. 5 903 [5] Giavaras G, Lambert N and Nori F 2013 Phys. Rev. B 87 115416 [6] Breyel D and Komnik A 2011 Phys. Rev. B 84 155305 [7] Kubo T, Ichigo Y and Tokura Y 2011 Phys. Rev. B 83 235310 [8] Chorley S J, Giavaras G, Wabnig J, Jones G A C, Smith C G, Briggs G A D and Buitelaar M R 2011 Phys. Rev. Lett. 106 206801 [9] Datta S, Wang S D, Tilmaciu C, Flahaut E, Marty L, Grifoni M and Wernsdorfer W 2011 Phys. Rev. B 84 035408 [10] Koh T S, Simmons C B, Eriksson M A, Coppersmith S N and Friesen M 2011 Phys. Rev. Lett. 106 186801 [11] Grap S, Andergassen S, Paaske J and Meden V 2011 Phys. Rev. B 83 115115 [12] Ueda A, Entin-Wohlman O, Eto M and Aharony A 2010 Phys. Rev. B 82 245317 [13] Jouravlev O N and Nazarov Y V 2006 Phys. Rev. Lett. 96 176804 [14] Brusheim P and Xu H Q 2006 Phys. Rev. B 73 045313 [15] Fujisawa T, Oosterkamp T H, Wiel W G, Broer B W, Aguado R, Tarucha S and Kouwenhoven L P 1998 Science 282 932 [16] Brandes T and Kramer B 1999 Phys. Rev. Lett. 83 3021 [17] Zhong Y L, Sergeev A, Chen C D and Lin J J 2010 Phys. Rev. Lett. 104 206803 [18] Ueda A and Eto M 2006 Phys. Rev. B 73 235353 [19] Huang Z F, Xu B Q, Chen Y C, Ventra M D and Tao N J 2006 Nano Lett. 6 1240 Huang Z F, Chen F, Dagosta R, Bennett P A, Ventra M D and Tao N J 2007 Nat. Nanotechnol. 2 698 [20] Chen Y C, Zwolak M and Ventra M D 2003 Nano Lett. 3 1691 Chen Y C, Zwolak M and Ventra M D 2005 Nano Lett. 5 621 [21] Sun Q f and Xie X C 2007 Phys. Rev. B 75 155306 Liu J, Song J T, Sun Q F and Xie X C 2009 Phys. Rev. B 79 161309 Wang J S, Wang J and Lu J T 2008 Eur. Phys. J. B 62 381 [22] Ji M, Zhao K, Du G, Kang J F, Han R Q and Liu X Y 2008 Chin. Phys. B 17 1869 [23] Zhu H T, Lou Q H, Qi Y F, Ma H X, Dong J X and Wei Y R 2005 Acta Phys. Sin. 54 5648 (in Chinese) [24] Zhou L L 2011 Chin. Phys. Lett. 28 128504 [25] Fransson J and Zhu J X 2008 Phys. Rev. B 78 113307 [26] Mahan G D 1990 Many-Particle Physics (New York: Springer) [27] Wingreen N S, Jauho A P and Meir Y 1993 Phys. Rev. B 48 8487 Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528 [28] Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324 [29] Tagani M B and Soleimani H R 2012 arXiv:1204.2162 [cond-mat] |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|