CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Low Frequency Ultra-Thin Compact Metamaterial Absorber Comprising Split-Ring Resonators |
LIN Bao-Qin**, DA Xin-Yu, ZHAO Shang-Hong, MENG Wen, LI Fan, ZHENG Qiu-Rong, WANG Bu-Hong |
Institute of Information and Navigation, Air Force Engineering University, Xi'an 710077
|
|
Cite this article: |
LIN Bao-Qin, DA Xin-Yu, ZHAO Shang-Hong et al 2014 Chin. Phys. Lett. 31 067801 |
|
|
Abstract We present a design of a low frequency ultra-thin compact and polarization-insensitive metamaterial absorber (MA). The designed MA is a two-layer structure, a periodic array of novel split-ring resonators (SRRs), which are constructed in an FR4 dielectric layer, and another ultra-thin grounded sheet is attached to the bottom. Numerical simulated results show that the proposed MA can realize effective absorption at the frequency 281.9 MHz, and its overall thickness is just only 0.29% of the resonant wavelength, the unit space is only 2.57%, and the absorbance is kept well for a wide range of incident angles for different polarizations. In addition, the proposed MA is changed into a more compact one when the inter-digital structures are introduced in the SRRs. One convenient experiment is carried out in a rectangular waveguide simulator.
|
|
Published: 26 May 2014
|
|
PACS: |
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
|
|
|
[1] Caloz C and Itoh T 2005 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (New Jersey: John Wiley and Sons Inc) [2] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773 [3] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075 [4] Veselago V G 1968 Sov. Phys. Usp. 10 509 [5] Shelby R A, Smith D R and Schultz S 2001 Science 292 77 [6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977 [7] Gu C, Qu S B, Pei Z B and Xu Z 2011 Chin. Phys. B 20 037801 [8] Zhu W R, Zhao X P, Bao S and Zhang Y P 2010 Chin. Phys. Lett. 27 014204 [9] Zhu W R, Zhao X P, Gong B Y, Liu L H and Su B 2011 Appl. Phys. A 102 147 [10] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J and Jiang T 2009 Chin. Phys. Lett. 26 114102 [11] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801 [12] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 017802 [13] Luo H, Wang T, Gong R Z, Nie Y and Wang X 2011 Chin. Phys. Lett. 28 034204 [14] Gu C, Qu S B, Pei Z B, Ma H, Xu Z, Bai P, Peng W D and Lin B Q 2011 Chin. Phys. Lett. 28 067808 [15] Fan Y N, Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Chin. Phys. B 22 067801 [16] Smith D R, Padilla W J and Vier D C 2000 Phys. Rev. Lett. 84 4184 [17] Baena J D, Marques R, Medina F and Martel J 2004 Phys. Rev. B 69 014402 [18] Fan J, Sun G Y and Zhu W R 2011 Chin. Phys. B 20 114101 [19] Huang L and Chen H 2011 Prog. Electromagn. Res. 113 103 [20] Zhu B, Wang Z, Huang C, Feng Y, Zhao J and Jiang T 2010 Prog. Electromagn. Res. 101 231 [21] Teruel O Q, Kehn M M and Rajo-Iglesias E 2011 IEEE Trans. Antennas Propag. 59 2758 [22] Menzel W, Zhu L, Wu K and Bogeslack F 2003 IEEE Trans. Microwave Theory Tech. 51 364 [23] Brown C and Carberry T 1963 IEEE Trans. Antennas Propag. 11 377 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|