Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 067801    DOI: 10.1088/0256-307X/31/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Low Frequency Ultra-Thin Compact Metamaterial Absorber Comprising Split-Ring Resonators
LIN Bao-Qin**, DA Xin-Yu, ZHAO Shang-Hong, MENG Wen, LI Fan, ZHENG Qiu-Rong, WANG Bu-Hong
Institute of Information and Navigation, Air Force Engineering University, Xi'an 710077
Cite this article:   
LIN Bao-Qin, DA Xin-Yu, ZHAO Shang-Hong et al  2014 Chin. Phys. Lett. 31 067801
Download: PDF(823KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a design of a low frequency ultra-thin compact and polarization-insensitive metamaterial absorber (MA). The designed MA is a two-layer structure, a periodic array of novel split-ring resonators (SRRs), which are constructed in an FR4 dielectric layer, and another ultra-thin grounded sheet is attached to the bottom. Numerical simulated results show that the proposed MA can realize effective absorption at the frequency 281.9 MHz, and its overall thickness is just only 0.29% of the resonant wavelength, the unit space is only 2.57%, and the absorbance is kept well for a wide range of incident angles for different polarizations. In addition, the proposed MA is changed into a more compact one when the inter-digital structures are introduced in the SRRs. One convenient experiment is carried out in a rectangular waveguide simulator.
Published: 26 May 2014
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/067801       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/067801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIN Bao-Qin
DA Xin-Yu
ZHAO Shang-Hong
MENG Wen
LI Fan
ZHENG Qiu-Rong
WANG Bu-Hong
[1] Caloz C and Itoh T 2005 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (New Jersey: John Wiley and Sons Inc)
[2] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[4] Veselago V G 1968 Sov. Phys. Usp. 10 509
[5] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[7] Gu C, Qu S B, Pei Z B and Xu Z 2011 Chin. Phys. B 20 037801
[8] Zhu W R, Zhao X P, Bao S and Zhang Y P 2010 Chin. Phys. Lett. 27 014204
[9] Zhu W R, Zhao X P, Gong B Y, Liu L H and Su B 2011 Appl. Phys. A 102 147
[10] Zhu B, Wang Z B, Yu Z Z, Zhang Q, Zhao J M, Feng Y J and Jiang T 2009 Chin. Phys. Lett. 26 114102
[11] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[12] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 017802
[13] Luo H, Wang T, Gong R Z, Nie Y and Wang X 2011 Chin. Phys. Lett. 28 034204
[14] Gu C, Qu S B, Pei Z B, Ma H, Xu Z, Bai P, Peng W D and Lin B Q 2011 Chin. Phys. Lett. 28 067808
[15] Fan Y N, Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Chin. Phys. B 22 067801
[16] Smith D R, Padilla W J and Vier D C 2000 Phys. Rev. Lett. 84 4184
[17] Baena J D, Marques R, Medina F and Martel J 2004 Phys. Rev. B 69 014402
[18] Fan J, Sun G Y and Zhu W R 2011 Chin. Phys. B 20 114101
[19] Huang L and Chen H 2011 Prog. Electromagn. Res. 113 103
[20] Zhu B, Wang Z, Huang C, Feng Y, Zhao J and Jiang T 2010 Prog. Electromagn. Res. 101 231
[21] Teruel O Q, Kehn M M and Rajo-Iglesias E 2011 IEEE Trans. Antennas Propag. 59 2758
[22] Menzel W, Zhu L, Wu K and Bogeslack F 2003 IEEE Trans. Microwave Theory Tech. 51 364
[23] Brown C and Carberry T 1963 IEEE Trans. Antennas Propag. 11 377
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 067801
[2] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 067801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 067801
[4] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 067801
[5] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 067801
[6] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 067801
[7] De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2020, 37(4): 067801
[8] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 067801
[9] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 067801
[10] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 067801
[11] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 067801
[12] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 067801
[13] Xiao-Wei Han, Lei Hou, Lei Yang, Zhi-Quan Wang, Meng-Meng Zhao, Wei Shi. Optical-Electrical Characteristics and Carrier Dynamics of Semi-Insulation GaAs by Terahertz Spectroscopic Technique[J]. Chin. Phys. Lett., 2016, 33(12): 067801
[14] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 067801
[15] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 067801
Viewed
Full text


Abstract