CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Charge Loss Characteristics of Different Al Contents in a HfAlO Trapping Layer Investigated by Variable Temperature Kelvin Probe Force Microscopy |
ZHANG Dong1,2, HUO Zong-Liang2**, JIN Lei2, HAN Yu-Long2, CHU Yu-Qiong2, CHEN Guo-Xing2, LIU Ming2**, YANG Bao-He1** |
1Tianjin Key Laboratory of Film Electronic and Communication Devices, Tianjin University of Technology, Tianjin 300384 2Institutes of Microelectronics, Chinese Academy of Sciences, Beijing 100029
|
|
Cite this article: |
ZHANG Dong, HUO Zong-Liang, JIN Lei et al 2014 Chin. Phys. Lett. 31 067701 |
|
|
Abstract Kelvin probe force microscopy (KFM) technology is applied to investigate the charge storage and loss characteristics of the HfAlO charge trapping layer with various Al contents. The experimental results demonstrate that with the increase of Al contents in the HfAlO trapping layer, trap density significantly increases. Improvement of data retention characteristic is also observed. Comparing the vertical charge loss and lateral charge spreading of the HfAlO trapping layers, the former plays a major role in the charge loss mechanism. Variable temperature KFM measurement results show that the extracted effective electron trap energy level increases with increasing Al contents in HfAlO trapping layer, which is in accordance with the charge loss characteristics.
|
|
Published: 26 May 2014
|
|
PACS: |
77.55.D-
|
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
|
|
[1] White M H, Adams D A and Bu J 2000 IEEE Circuits Devices Mag. 16 22 [2] Lee K H, Lin H C and Huang T Y 2013 IEEE Electron Device Lett. 34 393 [3] Lee C H, Hur S H, Shin Y C, Choi J H, Park J H and Kim Kinam 2005 Appl. Phys. Lett. 86 152908 [4] Sugizaki T, Kobayashi M, Ishidao M, Minakata H, Yamaguchi M, Tamura Y, Sugiyama Y, Nakanishi T and Tanaka H 2003 VLSI Symp. Tech. Dig. p 27 [5] Wang X, Liu J, Bai W P and Kwong D L 2004 IEEE Trans. Electron Devices 51 597 [6] Tan Y N, Chim W K, Choi W K, Joo M S and Cho B J 2006 IEEE Trans. Electron Devices 53 654 [7] Tsai P H, Chang-Liao K S, Liu C Y, Wang T K, Tzeng P J, Lin C H, Lee L S and Tsai M J 2008 IEEE Electron Device Lett. 29 265 [8] Tang Z J, Li R and Yin J 2013 Chin. Phys. B 22 097701 [9] Nonnenmacher M, o'Boyle M P and Wickramasinghe H K 1991 Appl. Phys. Lett. 58 2921 [10] Tzeng S D and Gwo S 2006 J. Appl. Phys. 100 023711 [11] Zhu C X, Yang R, Huo Z L, Xu Z G, Shi D X, Liu J, Zhang G Y and Liu M 2011 Appl. Phys. Lett. 99 223504 [12] Han Y L, Huo Z L, Li X K, Chen G X, Yang X N, Zhang D, Wang Y, Ye T C and Liu M 2013 IEEE Electron Device Lett. 34 870 [13] Baik S J, Lim K S, Choi W, Yoo H and Shin H 2011 IRPS p 650 [14] Wang Y and White M H 2005 Solid-State Electron. 49 97 [15] Pétry J, Vandervorst W and Conard T 2004 Mater. Sci. Eng. B 109 56 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|