Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 067202    DOI: 10.1088/0256-307X/31/6/067202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil
LUO Wen-Gang1, WANG Hua-Feng1, CAI Kai-Ming1, HAN Wen-Peng1, TAN Ping-Heng1, HU Ping-An2, WANG Kai-You1**
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, Harbin 150080
Cite this article:   
LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming et al  2014 Chin. Phys. Lett. 31 067202
Download: PDF(1723KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We synthesize the homogenous graphene films on cheap industrial Cu foils using low pressure chemical vapor deposition. The quality and the number of layers of graphene are characterized by Raman spectra. Through carefully tuning the growth parameters, we find that the growth temperature, hydrocarbon concentration and the growth time can substantially affect the growth of high-quality graphene. Both single and bilayer large size homogenous graphenes have been synthesized in optimized growth conditions. The growth of graphene on Cu surface is found to be self ceasing in the bilayer graphene process with the low solubility of carbon in Cu. Furthermore, we have optimized the transfer process, and clear graphene films almost free from impurity are successfully transferred onto Si/SiO2 substrates. The field effect transistors of bilayer graphene are fabricated, which demonstrates a maximum hole (electron) mobility of 4300 cm2V?1s?1 (1920 cm2V?1s?1) at room temperature.
Published: 26 May 2014
PACS:  72.80.Vp (Electronic transport in graphene)  
  68.65.Pq (Graphene films)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/067202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/067202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Wen-Gang
WANG Hua-Feng
CAI Kai-Ming
HAN Wen-Peng
TAN Ping-Heng
HU Ping-An
WANG Kai-You
[1] Novoselov K S et al 2004 Science 306 666
[2] Zhang Y B et al 2005 Nature 438 201
[3] Stoller M D et al 2008 Nano Lett. 8 3498
[4] Liu M et al 2011 Nature 474 64
[5] Xia F N et al 2009 Nat. Nanotechnol. 4 839
[6] Pan H L et al 2011 Chin. Phys. Lett. 28 127202
[7] Han M Y et al 2007 Phys. Rev. Lett. 98 206805
[8] Liu H et al 2010 Chin. Phys. Lett. 27 077201
[9] Li X L et al 2008 Science 319 1229
[10] Zhou S Y et al 2007 Nat. Mater. 6 770
[11] Giovannetti G et al 2007 Phys. Rev. B 76 073103
[12] Zhang Y B et al 2009 Nature 459 820
[13] Yu W J and Duan X F 2013 Sci. Rep. 3 1248
[14] Novoselov K S et al 2005 Nature 438 197
[15] Emtsev K V et al 2009 Nat. Mater. 8 203
[16] Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
[17] Pan Y et al 2009 Adv. Mater. 21 2777
[18] Gao L B et al 2012 Nat. Commun. 3 699
[19] Reina A et al 2009 Nano Lett. 9 30
[20] Iwasaki T et al 2011 Nano Lett. 11 79
[21] Kwon S Y et al 2009 Nano Lett. 9 3985
[22] Coraux J et al 2008 Nano Lett. 8 565
[23] Li X S et al 2009 Science 324 1312
[24] Lee Y et al 2010 Nano Lett. 10 490
[25] Liu W et al 2011 Carbon 49 4122
[26] Petrone N et al 2012 Nano Lett. 12 2751
[27] Bae S et al 2010 Nat. Nanotechnol. 5 574
[28] Lee S, Lee K and Zhong Z H 2010 Nano Lett. 10 4702
[29] Nie S et al 2012 New J. Phys. 14 093028
[30] Hofmann S et al 2007 Nano Lett. 7 602
[31] Kukovecz á et al 2000 Phys. Chem. Chem. Phys. 2 3071
[32] Pimenta M A et al 2007 Phys. Chem. Chem. Phys. 9 1276
[33] Thomsen C and Reich S 2000 Phys. Rev. Lett. 85 5214
[34] Hao Y F et al 2010 Small 6 195
[35] Ferrari A C et al 2006 Phys. Rev. Lett. 97 187401
[36] Malard L M et al 2009 Phys. Rep. 473 51
[37] Tongay S et al 2011 Nanotechnology 22 425701
[38] Iqbal M W et al 2012 J. Phys.: Condens. Matter 24 335301
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 067202
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 067202
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 067202
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 067202
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 067202
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 067202
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 067202
[8] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 067202
[9] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 067202
[10] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 067202
[11] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 067202
[12] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 067202
[13] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 067202
[14] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 067202
[15] F. Sattari, E. Faizabadi. Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices[J]. Chin. Phys. Lett., 2013, 30(9): 067202
Viewed
Full text


Abstract