Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 064206    DOI: 10.1088/0256-307X/31/6/064206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Investigation on Scattering of an Arbitrarily Incident Bessel Beam by Fractal Soot Aggregates
CUI Zhi-Wei**, HAN Yi-Ping, YU Mei-Ping
School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071
Cite this article:   
CUI Zhi-Wei, HAN Yi-Ping, YU Mei-Ping 2014 Chin. Phys. Lett. 31 064206
Download: PDF(1386KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Scattering of an arbitrarily incident Bessel beam by fractal soot aggregates is numerically investigated. The incident beam is described by the vector expressions of the zero-order Bessel beam in combination with rotation Euler angles. The scattering problems involving fractal soot aggregates are formulated with a hybrid vector finite element-boundary integral-domain decomposition method. Some numerical results are included to show the scattering behaviors of fractal soot aggregates when they are illuminated by Bessel beams.
Published: 26 May 2014
PACS:  42.25.Fx (Diffraction and scattering)  
  42.62.-b (Laser applications)  
  02.70.Dh (Finite-element and Galerkin methods)  
  02.70.Pt (Boundary-integral methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/064206       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/064206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CUI Zhi-Wei
HAN Yi-Ping
YU Mei-Ping
[1] Bai L, Wu Z S, Chen H and Guo L X 2005 Acta Phys. Sin. 54 2025 (in Chinese)
[2] Liu L and Mishchenko M I 2007 J. Quant. Spectrosc. Radiat. Transfer 106 262
[3] Farias T L, K?ylüü? and Carvalho M G 1996 Appl. Opt. 35 6560
[4] Kimura H 2001 J. Quant. Spectrosc. Radiat. Transfer 70 581
[5] Huang C J, Liu Y F and Wu Z S 2007 Acta Phys. Sin. 56 4068 (in Chinese)
[6] Botet R, Rannou P and Cabane M 1997 Appl. Opt. 36 8791
[7] Cui Z W, Han Y P, Ai X and Zhao W J 2011 Electromagnetics 31 469
[8] Cui Z W, Han Y P and Zhao W J 2012 J. Opt. A 14 035703
[9] Durnin J 1987 J. Opt. Soc. Am. A 4 651
[10] Witten T A and Sander L M 1983 Phys. Rev. B 27 5686
[11] Mackowski D W 2006 J. Quant. Spectrosc. Radiat. Transfer 100 237
[12] Sheng X Q, Jin J M, Song J M, Lu C C and Chew W C 1998 IEEE Trans. Antennas Propag. 46 303
[13] Toselli A and Widlund O 2005 Domain Decomposition Methods-Algorithms Theory (Berlin: Springer) p 87
[14] Song J M, Lu C C and Chew W C 1997 IEEE Trans. Antennas Propag. 45 1488
[15] Mishra S R 1991 Opt. Commun. 85 159
[16] Gouesbet G, Wang J J and Han Y P 2010 Opt. Commun. 283 3235
[17] Li Z J, Wu Z S, Li H and Li H Y 2011 Chin. Phys. B 20 081101
Related articles from Frontiers Journals
[1] Xu-Zhen Gao, Meng-Shuai Wang, Jia-Hao Zhao, Peng-Cheng Zhao, Xia Zhang, Yue Pan, Yongnan Li, Chenghou Tu, and Hui-Tian Wang. Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry[J]. Chin. Phys. Lett., 2020, 37(12): 064206
[2] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 064206
[3] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 064206
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 064206
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 064206
[6] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 064206
[7] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 064206
[8] Yi Ruan, Kan Li, Qiang Lin, Ting Zhang. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method[J]. Chin. Phys. Lett., 2018, 35(4): 064206
[9] Yi-Peng Zheng, Jin-Hai Si, Wen-Jiang Tan, Xiao-Jing Liu, Jun-Yi Tong, Xun Hou. Imaging Transparent Objects in a Turbid Medium Using a Femtosecond Optical Kerr Gate[J]. Chin. Phys. Lett., 2017, 34(10): 064206
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 064206
[11] Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang, Dong-Xiang Zhang, Xin Xu, Jia-Sheng Ye, Yan Zhang, Dong-Mei Li, Qing-Bo Meng, Li Pan, Guo-Zhen Yang. Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics[J]. Chin. Phys. Lett., 2016, 33(09): 064206
[12] Ya-Ming Xie, Chang-Yu Liu, Ze-Jun Ding, Zhi-Guo Wang. Optimization Design of Electromagnetic Nihility Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(09): 064206
[13] Yang Miao, Can Wu, Ning Wang, Jia-Qi You. Angle Compensation and Asymmetry Effect of Light Diffracted by Millimeter Liquid Surface Slosh Wave[J]. Chin. Phys. Lett., 2016, 33(07): 064206
[14] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 064206
[15] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 064206
Viewed
Full text


Abstract