Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 064203    DOI: 10.1088/0256-307X/31/6/064203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Facile Synthesis of Au Nanocube-CdS Core-Shell Nanocomposites with Enhanced Photocatalytic Activity
LIU Xiao-Li1, LIANG Shan1, LI Min2, YU Xue-Feng1**, ZHOU Li1, WANG Qu-Quan1**
1Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072
2School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116
Cite this article:   
LIU Xiao-Li, LIANG Shan, LI Min et al  2014 Chin. Phys. Lett. 31 064203
Download: PDF(2144KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS nanocomposites are investigated. Compared with the pure Au nanocubes, the Au-CdS nanocomposites exhibit enhanced extinction intensity. Compared with CdS nanoparticles, the Au-CdS nanocomposites exhibit improved photocatalytic activity. Furthermore, the photocatalytic efficiency is even better with the increase in the core size of the Au-CdS nanocomposites. Typically, the photocatalytic efficiency of the Au-CdS with 62 nm sized Au nanocubes is about two times higher than that of the pure CdS. It is believed that the Au-CdS nanocomposites may find potential applications in environmental fields, and this synthesis method can be extended to prepare a wide variety of functional composites with Au cores.

Published: 26 May 2014
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  73.40.Ns (Metal-nonmetal contacts)  
  81.16.Be (Chemical synthesis methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/064203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/064203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Xiao-Li
LIANG Shan
LI Min
YU Xue-Feng
ZHOU Li
WANG Qu-Quan

[1] Pei D and Luan J 2012 Int. J. Photoenergy 2012 1
[2] Li X, Jia Y and Cao A 2010 ACS Nano 4 506
[3] Pan Z, Zhang H, Cheng K, Hou Y, Hua J and Zhong X 2012 ACS Nano 6 3982
[4] Hu Y, Gao X, Yu L, Wang Y, Ning J, Xu S and Lou X W 2013 Angew. Chem. Int. Ed. 52 5636
[5] Yang W, Liu Y, Hu Y, Zhou M and Qian H 2012 J. Mater. Chem. 22 13895
[6] Liu Y, Zhou L, Hu Y, Guo C, Qian H, Zhang F and Lou X W 2011 J. Mater. Chem. 21 18359
[7] Wang J, Lang S, Ma L, Ding S, Yu X, Zhou L and Wang Q 2014 CrystEngComm 16 399
[8] Chu H Y, Liu Z X, Qiu G L, Kong D G, Wu S X, Li Y C and Du Z L 2008 Chin. Phys. B 17 2478
[9] Kim N H, Myung K D and Lee W S 2012 Chin. Phys. Lett. 29 127302
[10] Fang L, Chen J, Xu L, Su W N, Yu Y, Xu J and Ma Z Y 2013 Chin. Phys. B 22 098802
[11] Kamat P V 2007 J. Phys. Chem. C 111 2834
[12] Mokari T, Rothenberg E, Popov I, Costi R and Banin U 2004 Science 304 1787
[13] Yu H, Chen M, Rice P M, Wang S X, White R L and Sun S 2005 Nano Lett. 5 379
[14] Zhang J, Tang Y, Lee K and Ouyang M 2010 Science 327 1634
[15] Sun Z, Yang Z, Zhou J, Yeung M H, Ni W, Wu H and Wang J 2009 Angew. Chem. Int. Ed. 48 2881
[16] Zeng J, Tao J, Su D, Zhu Y, Qin D and Xia Y 2011 Nano Lett. 11 3010
[17] Zhang N, Liu S, Fu X and Xu Y J 2011 J. Phys. Chem. C 115 9136
[18] Li M, Yu X F, Liang S, Peng X N, Yang Z J, Wang Y L and Wang Q Q 2011 Adv. Funct. Mater. 21 1788
[19] Liang S, Liu X L, Yang Y Z, Wang Y L, Wang J H, Yang Z J, Wang L B, Jia S F, Yu X F, Zhou L, Wang J B, Zeng J, Wang Q Q and Zhang Z 2012 Nano Lett. 12 5281
[20] Seo D, Park G and Song H 2012 J. Am. Chem. Soc. 134 1221
[21] Liu Y S, Wang L, Qin D H and Cao Y 2006 Chin. Phys. Lett. 23 3345
[22] Fu X L, Peng Z J, Tang W H and Guo X 2009 Chin. Phys. B 18 4460
[23] Zhang N, Liu S and Xu Y J 2012 Nanoscale 4 2227
[24] Hirakawa T and Kamat P V 2005 J. Am. Chem. Soc. 127 3928
[25] Zhou N, Polavarapu L, Gao N, Pan Y, Yuan P, Wang Q and Xu Q H 2013 Nanoscale 5 4236
[26] Murdoch M, Waterhouse G I N, Nadeem M A, Metson J B, Keane M A, Howe R F, Llorca J and Idriss H 2011 Nat. Chem. 3 489
[27] Tom R T, Nair A S, Singh N, Aslam M, Nagendra C L, Philip R, Vijayamohanan K and Pradeep T 2003 Langmuir 19 3439
[28] Haldar K K, Sinha G, Lahtinen J and Patra A 2012 ACS Appl. Mater. Interfaces 4 6266
[29] Chen W T, Lin Y K, Yang T T, Pu Y C and Hsu Y J 2013 Chem. Commun. 49 8486
[30] Zhang N, Liu S, Fu X and Xu Y J 2012 J. Mater. Chem. 22 5042
[31] Kumar N, Komarala V K and Dutta V 2014 Chem. Eng. J. 236 66
[32] Wu X F, Song H Y, Yoon J M, Yu Y T and Chen Y F 2009 Langmuir 25 6438
[33] Liu X L, Liang S, Nan F, Pan Y Y, Shi J J, Zhou L, Jia S F, Wang J B, Yu X F and Wang Q Q 2013 Opt. Express 21 24793
[34] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[35] Chen H, Kou X, Yang Z, Ni W and Wang J 2008 Langmuir 24 5233
[36] Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H and Wang Q Q 2013 Nanoscale 5 5368
[37] Lee J S, Shevchenko E V and Talapin D V 2008 J. Am. Chem. Soc. 130 9673
[38] Watanabe T, Takizawa T and Honda K 1977 J. Phys. Chem. 81 1845
[39] Konstantinou I K and Albanis T A 2004 Appl. Catal. B: Environ. 49 1

Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 064203
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 064203
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 064203
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 064203
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 064203
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 064203
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 064203
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 064203
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 064203
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 064203
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 064203
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 064203
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 064203
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 064203
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 064203
Viewed
Full text


Abstract