Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 064201    DOI: 10.1088/0256-307X/31/6/064201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film
Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber**
Department of Electrical and Electronic Engineering, Islamic University of Technology, Board Bazar, Gazipur-1704, Bangladesh
Cite this article:   
Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber 2014 Chin. Phys. Lett. 31 064201
Download: PDF(605KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple integrated coupler is proposed for the efficient excitation of surface plasmon polariton (SPP) mode in a thin metal film. The SPP mode is generated in a single Ag-dielectric interface by the incident field and coupled with an Ag thin film. The coupling efficiency at different wavelengths using two different dielectrics, gallium lanthanum sulfide (GLS) and aluminum gallium arsenide (AlGaAs) is calculated by analyzing the SPP propagation dynamics with the finite difference time domain method. A maximum coupling efficiency of 70% is obtained at a wavelength of 460 nm when GLS is used, whereas the corresponding value obtained for AlGaAs is 60% at 560 nm. The proposed structure can be used to excite SPPs in a nano-thin film from an external bulky source and is easier to fabricate since a single interface metal-dielectric configuration is used to excite the metal-thin film.
Published: 26 May 2014
PACS:  42.15.Eq (Optical system design)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.82.Et (Waveguides, couplers, and arrays)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/064201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/064201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rakibul Hasan Sagor
Md. Ruhul Amin
Md. Ghulam Saber
[1] Blaikie R J and Melville D O 2005 J. Opt. A: Pure Appl. Opt. 7 S176
[2] Haes A J and Van Duyne R P 2002 J. Am. Chem. Soc. 124 10596
[3] Melville D O, Blaikie R J and Wolf C 2005 Opt. Express 13 2127
[4] Dionne J, Lezec H and Atwater H A 2006 Nano Lett. 6 1928
[5] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[6] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) chap 3 p 42
[7] Radko I P, Bozhevolnyi S I, Brucoli G, Martin-Moreno L, GarCia Vidal F and Boltasseva A 2008 Phys. Rev. B 78 115115
[8] Park S Y, Kim J T, Shin J S and Shin S Y 2009 Opt. Commun. 282 4513
[9] Ditlbacher H, Galler N, Koller D, Hohenau A, Leitner A, Aussenegg F and Krenn J 2008 Opt. Express 16 10455
[10] Hecht B, Bielefeldt H, Novotny L, Inouye Y and Pohl D 1996 Phys. Rev. Lett. 77 1889
[11] Babuty A, Bousseksou A, Tetienne J P, Doyen I M, Sirtori C, Beaudoin G, Sagnes I, De Wilde Y and Colombelli R 2010 Phys. Rev. Lett. 104 226806
[12] Tetienne J, Bousseksou A, Costantini D, De Wilde Y and Colombelli R 2011 Opt. Express 19 18155
[13] Kunz K S and Luebbers R J 1993 Finite Difference Time Domain Methods for Electromagnetics (Florida: CRC Press) chap 8 p 124
[14] Rakic A D, Djurisic A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[15] Alsunaidi M and Al-Hajiri F 2009 Progress in Electromagnetic Research Symposium (Beijing 23–27 March 2009) p 1694
[16] Sagor R H 2012 Int. J. Comp. Appl. 50 24
[17] Yee K 1966 IEEE Trans. Antennas Propag. 14 302
[18] Alsunaidi M A and Al-Jabr A A 2009 IEEE Photon. Technol. Lett. 21 817
[19] Al-Jabr A and Alsunaidi M 2009 J. Infrared Millimeter Terahertz Waves 30 1226
[20] Berenger J P 1994 J. Comput. Phys. 114 185
[21] Gehrsitz S, Reinhart F, Gourgon C, Herres N, Vonlanthen A and Sigg H 2000 J. Appl. Phys. 87 7825
[22] Samson Z L, Yen S C, MacDonald K F, Knight K, Li S, Hewak D W, Tsai D P and Zheludev N I 2010 Phys. Status Solidi RRL 4 274
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 064201
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 064201
[3] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 064201
[4] Yang Miao, Xiang Guo, Xiao-Jun Zhang. Visualization of Fiber Moving in Air Tunnel with Velocity Gradient[J]. Chin. Phys. Lett., 2020, 37(3): 064201
[5] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 064201
[6] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 064201
[7] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 064201
[8] Lei Liu, Shou-Huan Zhou, Yang Liu, Zhe Wang, Gang Wang, Hong Zhao. The 5.2kW Nd:YAG Slab Amplifier Chain Seeded by Nd:YVO$_{4}$ Innoslab Laser[J]. Chin. Phys. Lett., 2017, 34(6): 064201
[9] Lei Hou, Xiao-Wei Han, Lei Yang, Wei Shi. Terahertz Real-Time Off-Axis Digital Holography with Zoom Function[J]. Chin. Phys. Lett., 2017, 34(5): 064201
[10] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 064201
[11] Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang, Dong-Xiang Zhang, Xin Xu, Jia-Sheng Ye, Yan Zhang, Dong-Mei Li, Qing-Bo Meng, Li Pan, Guo-Zhen Yang. Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics[J]. Chin. Phys. Lett., 2016, 33(09): 064201
[12] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 064201
[13] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 064201
[14] WANG Zhong-Kai, HU Dong, NIU Lin-Xiao, ZHANG Jia-Hua, CHEN Xu-Zong, ZHOU Xiao-Ji. The Mode Matching of Hybrid Trap by Frequency Calibration[J]. Chin. Phys. Lett., 2015, 32(5): 064201
[15] HE Tao, YANG Su-Hui, Miguel Ángel Muñoz, ZHANG Hai-Yang, ZHAO Chang-Ming, ZHANG Yi-Chen, XU Peng. High-Power High-Efficiency Laser Power Transmission at 100 m Using Optimized Multi-Cell GaAs Converter[J]. Chin. Phys. Lett., 2014, 31(10): 064201
Viewed
Full text


Abstract