Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 063102    DOI: 10.1088/0256-307X/31/6/063102
ATOMIC AND MOLECULAR PHYSICS |
Calculation of Higher-Order Foldy-Wouthuysen Transformation Hamiltonian
MEI Xue-Song1, ZHAO Shu-Min2,3, QIAO Hao-Xue1**
1School of Physics and Technology, Wuhan University, Wuhan 430072
2College of Physics and Technology, Hebei University, Baoding 071000
3Division of Theoretical and Interdisciplinary Research, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Cite this article:   
MEI Xue-Song, ZHAO Shu-Min, QIAO Hao-Xue 2014 Chin. Phys. Lett. 31 063102
Download: PDF(420KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Foldy–Wouthuysen Hamiltonian of a light atomic system that has an 8 contribution to energy levels is calculated. The case of a Dirac–Coulomb field is discussed. The results can be used for relativistic and radiative corrections to energy levels in the low-energy part. A divergent operator δ2(r) emerges. This is probably due to the nature of the point-like charge source. The effective method of radiation calculation may be re-checked.

Published: 26 May 2014
PACS:  31.30.jy (Higher-order effective Hamiltonians)  
  12.20.Ds (Specific calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/063102       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/063102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MEI Xue-Song
ZHAO Shu-Min
QIAO Hao-Xue

[1] Foldy L L and Wouthuysen S A 1950 Phys. Rev. 78 29
[2] Pachucki K 1993 Ann. Phys. 226 1
[3] Pachucki K 2005 Phys. Rev. A 71 012503
[4] Jentschura U and Pachucki K 1996 Phys. Rev. A 54 1853
[5] Pachucki K 1998 J. Phys. B 31 2489
[6] Carbonell J, Lazauskas R and Korobov V I 2004 J. Phys. B 37 2997
[7] Pachucki K and Yerokhin V A 2011 J. Phys.: Conf. Ser. 264 012007
[8] Pachucki K and Yerokhin V A 2009 Phys. Rev. A 79 062516
[9] Pachucki K and Yerokhin V A 2009 Phys. Rev. A 80 019902
[10] Korobov V I, Hilico L and Karr J P 2014 Phys. Rev. Lett. 112 103003
[11] Zelevinsky T, Farkas D and Gabrielse G 2005 Phys. Rev. Lett. 95 203001
[12] Koelemeij J C J, Both B, Wicht A, Ernsting I and Schiller S 2007 Phys. Rev. Lett. 98 173002
[13] Hanneke D, Fogwell S, Gabrielse G 2008 Phys. Rev. Lett. 100 120801
[14] Greiner W 2000 Relativistic Quantum Mech. (Berlin: Springer) chap 11
[15] Nio M and Kinoshita T 1997 Phys. Rev. D 55 7267
[16] Eides M I, Grotch H and Shelyuto V A 2001 Phys. Rep. 342 63
[17] Turovsky A 2012 arXiv:1211.6904 [quant-ph]
[18] Zatorski J and Pachucki K 2010 Phys. Rev. A 82 052520

Related articles from Frontiers Journals
[1] Long Xiong, Wei-Feng Zhuang, and Ming Gong. Dynamics of Quantum State and Effective Hamiltonian with Vector Differential Form of Motion Method[J]. Chin. Phys. Lett., 2022, 39(7): 063102
Viewed
Full text


Abstract