Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 062501    DOI: 10.1088/0256-307X/31/6/062501
NUCLEAR PHYSICS |
Magnetic Effects in Color-Flavor Locked Superconducting Phase with the Additional Chiral Condensates
REN Chun-Fu1, ZHANG Xiao-Bing1**, ZHANG Yi2
1School of Physics, Nankai University, Tianjin 300071
2Department of Physics, Shanghai Normal University, Shanghai 200230
Cite this article:   
REN Chun-Fu, ZHANG Xiao-Bing, ZHANG Yi 2014 Chin. Phys. Lett. 31 062501
Download: PDF(579KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the color-flavor locked quark superconducting phase with the additional chiral condensates, the magnetic effects are investigated within the three-flavor Nambu–Jona–Lasinio framework. Based on the rotated electromagnetic mechanism, we incorporate the effective quark masses into the coexistence phase self-consistently. The numerical calculation shows that the magnetic catalysis of effective masses is different from the known phenomenon that occurs in the unpaired quark matter. Moreover, the interplay between magnetic catalysis and gap splitting is studied for the first time.

Published: 26 May 2014
PACS:  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
  12.39.Fe (Chiral Lagrangians)  
  12.38.-t (Quantum chromodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/062501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/062501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Chun-Fu
ZHANG Xiao-Bing
ZHANG Yi

[1] Kharzeev D et al 2013 Strongly Interacting Matter in Magnetic Fields (Heidelberg: Springer-Verlag)
[2] Fukushima K et al 2008 Phys. Rev. D 78 074033
[3] Fukushima K et al 2010 Phys. Rev. D 81 114031
[4] Gorbar E V et al 2012 Prog. Part. Nucl. Phys. 67 547
[5] Rajagopal K and Wilczek F 2000 arXiv:hep-ph/0011333
[6] Schäfer T 2003 arXiv:hep-ph/0304281
[7] Alford M G 2004 Prog. Ther. Phys. Suppl. 153 1
[8] Rischke D H 2004 Prog. Part. Nucl. Phys. 52 197
[9] Buballa M 2005 Phys. Rep. 407 205
[10] Alford M G et al 2008 Rev. Mod. Phys. 80 1455
[11] Alford M G et al 2000 Nucl. Phys. B 571 269
[12] Gorbar E V 2000 Phys. Rev. D 62 014007
[13] Casalbuoni R et al 2004 Phys. Lett. B 600 48
[14] Ferrer E J et al 2005 Phys. Rev. Lett. 95 152002
[15] Ferrer E J et al 2006 Nucl. Phys. B 747 88
[16] Ferrer E J and de la Incera V 2007 Phys. Rev. D 76 045011
[17] Noronha J L and Shovkovy I A 2007 Phys. Rev. D 76 105030 [Erratum-ibid 2012 86 049901(E)]
[18] Fukushima K and Warringa H J 2008 Phys. Rev. Lett. 100 032007
[19] Ferrer E J 2009 arXiv:0912.0967 [hep-ph]
[20] Fayazbakhsh Sh and Sadooghi N 2010 Phys. Rev. D 82 045010
[21] Feng B et al 2010 Phys. Rev. Lett. 105 042001
[22] Feng B et al 2011 Phys. Lett. B 706 232
[23] Feng B et al 2011 Nucl. Phys. B 853 213
[24] Fayazbakhsh Sh and Sadooghi N 2011 Phys. Rev. D 83 025026
[25] Wu P P et al 2011 Phys. Rev. D 84 027701
[26] Mandal T and Jaikumar P 2013 Phys. Rev. C 87 045208
[27] Wen X J 2013 Phys. Rev. D 88 034031
[28] Paulucci L et al 2011 Phys. Rev. D 83 043009
[29] Blaschke D et al 1999 Astron. Astrophys. 350 L47
[30] Felipe R G et al 2008 Phys. Rev. C 77 015807
[31] Felipe R G et al 2011 Eur. Phys. J. A 47 1
[32] Alford M G et al 1998 Phys. Lett. B 422 247
Alford M G et al 1999 Nucl. Phys. B 537 443
[33] Gusynin V P et al 1994 Phys. Rev. Lett. 73 3499 (Erratum-ibid 1996 76 1005)
Gusynin V P et al 1996 Nucl. Phys. B 462 249
[34] Schäfer T and Wilczek F 1999 Phys. Rev. Lett. 82 3956
[35] Blaschke D et al 2003 Eur. Phys. J. A 17 103
[36] Hatsuda T et al 2006 Phys. Rev. Lett. 97 122001
[37] Buballa M and Oertel M 2002 Nucl. Phys. A 703 770
[38] Kitazawa M et al 2008 Phys. Lett. B 663 228
[39] Menezes D P et al 2009 Phys. Rev. C 80 065805
[40] Buballa M and Nickel D 2010 Acta Phys. Polon. Suppl. 3 523
[41] Abuki H et al 2010 Phys. Rev. D 81 125010
[42] Basler H and Buballa M 2010 Phys. Rev. D 82 094004
[43] Zhang X B et al 2011 Commun. Theor. Phys. 55 1065
[44] Xia T et al 2013 Phys. Rev. D 88 056013
[45] Litim D F and Manuel C 2001 Phys. Rev. D 64 094013
[46] Elizalde E et al 2002 Ann. Phys. 295 33
[47] Elizalde E et al 2004 Phys. Rev. D 70 043012
[48] Menezes D P et al 2009 Phys. Rev. C 79 035807
[49] Preis F et al 2011 J. High Energy Phys. 1103 033
[50] Bruckmann F et al 2013 J. High Energy Phys. 1304 112
[51] Shao G Y et al 2011 Phys. Rev. D 84 034028
[52] Powell P D and Baym G 2013 Phys. Rev. D 88 014012

Related articles from Frontiers Journals
[1] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 062501
[2] Zhen-Yu Xu, Jian-Li Liu, Pan-Pan Zhang, Jing-Bo Zhang, Lei Huo. Elliptic Flow Splitting between Particles and their Antiparticles in Au+Au Collisions from a Multiphase Transport Model[J]. Chin. Phys. Lett., 2017, 34(6): 062501
[3] Shi-Jun Mao. Deconfinement Phase Transition with External Magnetic Field in the Friedberg–Lee Model[J]. Chin. Phys. Lett., 2016, 33(11): 062501
[4] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 062501
[5] XU Shu-Sheng, SHI Yuan-Mei, YANG You-Chang, CUI Zhu-Fang, ZONG Hong-Shi. Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics[J]. Chin. Phys. Lett., 2015, 32(12): 062501
[6] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 062501
[7] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 062501
[8] DING Jing-Zhi, JIN Hong-Ying. Quark and Gluon Condensates at Finite Temperatures by the Linear Sigma Model Approach[J]. Chin. Phys. Lett., 2014, 31(08): 062501
[9] JIANG Yu,GONG Hao,SUN Wei-Min,ZONG Hong-Shi,**. Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass[J]. Chin. Phys. Lett., 2012, 29(4): 062501
[10] QU Zhen, LIU Yun-Peng, ZHUANG Peng-Fei. Dissociation Temperature of Strictly Confined Charmonium States[J]. Chin. Phys. Lett., 2012, 29(3): 062501
[11] FU Yong-Ping, LI Yun-De . Intermediate Mass Dileptons from the Passage of Jets and High Energy Photons through Quark-Gluon Plasma[J]. Chin. Phys. Lett., 2010, 27(10): 062501
[12] XIANG Wen-Chang, WANG Sheng-Qin, ZHOU Dai-Cui. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects[J]. Chin. Phys. Lett., 2010, 27(7): 062501
[13] YU Li-Li, M. J. Efaaf, ZHANG Wei-Ning,. Interferometry Signatures for QCD First-Order Phase Transition in High Energy Heavy Ion Collisions[J]. Chin. Phys. Lett., 2010, 27(2): 062501
[14] FU Yong-Ping, LI Yun-De. Jet-Photon Production at RHIC and LHC[J]. Chin. Phys. Lett., 2009, 26(11): 062501
[15] LIU Jian-Li, SHAN Lian-Qiang, FENG Qi-Chun, WU Feng-Juan, ZHANG Jing-Bo, TANG Gui-Xin, HUO Lei. A Non-Zero Hadronic Elliptic Flow with a Vanished Partonic Elliptic Flow in a Coalescence Scenario[J]. Chin. Phys. Lett., 2009, 26(7): 062501
Viewed
Full text


Abstract