NUCLEAR PHYSICS |
|
|
|
|
Electromagnetic Transition Strengths and New Insight into the Chirality in 106Ag |
ZHENG Yun1, ZHU Li-Hua2,3**, WU Xiao-Guang1**, HE Chuang-Ye1, LI Guang-Sheng1, HAO Xin1,3, YU Bei-Bei1, YAO Shun-He1, ZHANG Biao1, XU Chuan4, WANG Jian-Guo5, GU Long5 |
1China Institute of Atomic Energy, Beijing 102413
2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
3Faculty of Science, Shenzhen University, Shenzhen 518060
4School of Physics, Peking University, Beijing 100871
5Department of Physics, Tsinghua University, Beijing 100084 |
|
Cite this article: |
ZHENG Yun, ZHU Li-Hua, WU Xiao-Guang et al 2014 Chin. Phys. Lett. 31 062101 |
|
|
Abstract Excited states in 106Ag are populated through the heavy-ion fusion evaporation reaction 100Mo(11B,5n)106Ag at a beam energy of 60 MeV. Lifetimes are measured for transitions of the two negative-parity rotational bands in the nucleus 106Ag. The reduced transition probabilities show a great difference between the two bands. The staggering of the B(M1) and B(M1)/B(E2) values with spin are not observed. The bands are identified to be built on two distinct quasiparticle configurations. These results are contrary to an earlier suggestion that the pair of bands in 106Ag are chiral doublet bands.
|
|
Published: 26 May 2014
|
|
|
|
|
|
[1] Frauendorf S and Meng J 1997 Nucl. Phys. A 617 131
[2] Petrache C M et al 1996 Nucl. Phys. A 597 106
[3] Starosta K et al 2001 Phys. Rev. Lett. 86 971
[4] Koike T, Starosta K, Chiara C J, Fossan D B and LaFosse D R 2001 Phys. Rev. C 63 061304(R)
[5] Hecht A A et al 2001 Phys. Rev. C 63 051302(R)
[6] Hartley D J et al 2001 Phys. Rev. C 64 031304(R)
[7] Bark R A, Baxter A M, Byrne A P, Dracoulis G D, Kibédi T, McGoram T R and Mullins S M 2001 Nucl. Phys. A 691 577
[8] Starosta K et al 2002 Phys. Rev. C 65 044328
[9] Mergel E et al 2002 Eur. Phys. J. A 15 417
[10] Rainovski G et al 2003 Phys. Rev. C 68 024318
[11] Koike T, Starosta K, Chiara C J, Fossan D B and LaFosse D R 2003 Phys. Rev. C 67 044319
[12] Zhu S et al 2003 Phys. Rev. Lett. 91 132501
[13] Hecht A A et al 2003 Phys. Rev. C 68 054310
[14] Simons A J et al 2005 J. Phys. G 31 541
[15] Wang S Y, Liu Y Z, Komatsubara T, Ma Y J and Zhang Y H 2006 Phys. Rev. C 74 017302
[16] Timár J et al 2004 Phys. Lett. B 598 178
[17] Alcántara-Núñez J A et al 2004 Phys. Rev. C 69 024317
[18] Joshi P et al 2004 Phys. Lett. B 595 135
[19] Vaman C, Fossan D B, Koike T, Starosta K, Lee I Y and Macchiavelli A O 2004 Phys. Rev. Lett. 92 032501
[20] Zhu S J et al 2005 Eur. Phys. J. A 25 459(s01)
[21] Joshi P et al 2005 Eur. Phys. J. A 24 23
[22] Timár J, Vaman C et al 2006 Phys. Rev. C 73 011301(R)
[23] He C Y et al 2006 Chin. Phys. C 19 89(S2)
[24] Timár J et al 2007 Phys. Rev. C 76 024307
[25] Joshi P, Carpenter M P, Fossan D B, Koike T, Paul E S, Rainovski G, Starosta K, Vaman C and Wadsworth R 2007 Phys. Rev. Lett. 98 102501
[26] Suzuki T et al 2008 Phys. Rev. C 78 031302(R)
[27] Balabanski D L et al 2004 Phys. Rev. C 70 044305
[28] Lawrie E A et al 2008 Phys. Rev. C 78 021305(R)
[29] Wang S Y et al 2011 Phys. Lett. B 703 40
[30] Tonev D et al 2006 Phys. Rev. Lett. 96 052501
[31] Tonev D et al 2007 Phys. Rev. C 76 044313
[32] Grodner E et al 2006 Phys. Rev. Lett. 97 172501
[33] Wang L L et al 2009 Chin. Phys. C 33 173
[34] Wu X G et al 2012 Plasma. Sci. Technol. 14 526
[35] Mukhopadhyay S et al 2007 Phys. Rev. Lett. 99 172501
[36] Mukhopadhyay S et al 2008 Phys. Rev. C 78 034311
[37] Gascon J et al 1990 Nucl. Phys. A 513 344
[38] Ziegler J F, Biersack J P and Littmark U 1985 Stopping Range Ions Solid Vol 1 (New York: Pergamon)
[39] Petrache C M, Hagemann G B, Hamamoto I and Starosta K 2006 Phys. Rev. Lett. 96 112502
[40] Jerrestam Dan et al 1994 Nucl. Phys. A 577 786
[41] Wang S Y et al 2007 Chin. Phys. Lett. 24 664 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|