Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060507    DOI: 10.1088/0256-307X/31/6/060507
GENERAL |
Dynamics in the Kuramoto Model with a Discontinuous Bimodal Distribution of Natural Frequencies
WU Xiao-Li, YANG Jun-Zhong**
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
WU Xiao-Li, YANG Jun-Zhong 2014 Chin. Phys. Lett. 31 060507
Download: PDF(1440KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a Kuramoto model in which the natural frequencies of oscillators follow a discontinuous bimodal distribution constructed from a Lorentzian one. Different synchronous dynamics (such as different types of travelling wave states, standing wave states, and stationary synchronous states) are identified and the transitions between them are investigated. We find that increasing the asymmetry in frequency distribution brings the critical coupling strength to a low value and that strong asymmetry is unfavorable to standing wave states.
Published: 26 May 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060507       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Xiao-Li
YANG Jun-Zhong
[1] Buck J and Buck E 1976 Sci. Am. 234 74
[2] Swift J W, Strogatz S H and Wiesenfeld K 1992 Physica D 55 239
[3] Javaloyes J, Perrin M and Politi A 2008 Phys. Rev. E 78 011108
[4] Wickramasinghe M and Kiss I Z 2011 Phys. Rev. E 83 016210
[5] Néda Z et al 2000 Phys. Rev. E 61 6987
[6] Eckhardt B et al 2007 Phys. Rev. E 75 021110
[7] Lu L and Jing X 2009 Acta Phys. Sin. 58 7539 (in Chinese)
[8] Wang B et al 2006 Chin. Phys. Lett. 23 2909
[9] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (New York: Springer)
[10] Ott E and Antonsen T M 2008 Chaos 18 037113
[11] Martens E A et al 2009 Phys. Rev. E 79 026402
[12] Bonilla L L, Neu J C and Spigler R 1992 J. Stat. Phys. 67 313
[13] Acebron J A et al 1998 Phys. Rev. E 57 5287
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 060507
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 060507
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 060507
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 060507
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 060507
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 060507
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 060507
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 060507
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 060507
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 060507
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 060507
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 060507
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 060507
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 060507
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 060507
Viewed
Full text


Abstract