Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060506    DOI: 10.1088/0256-307X/31/6/060506
GENERAL |
Villain Transformation for Ferrimagnetic Spin Chain
YANG Ge1, CHEN Bin1,2**
1Department of Physics, University of Shanghai for Science and Technology, Shanghai 200093
2Department of Physics, Hangzhou Normal University, Hangzhou 310018
Cite this article:   
YANG Ge, CHEN Bin 2014 Chin. Phys. Lett. 31 060506
Download: PDF(528KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

By using the Villain transformation, the Heisenberg ferrimagnetic spin chain is calculated. Two branches of the low-lying excitation in both the absence and presence of magnetic field are obtained. The thermodynamic quantities (such as free energy, magnetization, specific heat and static magnetic susceptibility) are also evaluated at finite temperature. This is the first time to calculate the Ferrimagnetic spin chain by using Villain's method, and we find that the results at a low temperature are quite similar to the previous calculation. The results of free energy and magnetization in zero temperature suggest that the Villain transformation has a good efficiency.

Published: 26 May 2014
PACS:  05.30.-d (Quantum statistical mechanics)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.50.Gg (Ferrimagnetics)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060506       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Ge
CHEN Bin

[1] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[2] Brehmer S, Mikeska H J and Yamamoto S 1997 J. Phys. C 9 3921
[3] Kolezhuk A K, Mikeska H J and Yamamoto S 1997 Phys. Rev. B 55 R3336
[4] Yamamoto S, Fukui T, Maisinger K and Schllöck U 1998 J. Phys.: Condens. Matter 10 11033
[5] Yamamoto S 2004 Phys. Rev. B 69 064426
[6] Yamamoto S and Fukui T 1998 Phys. Rev. B 57 R14008
[7] Yamamoto S, Brehmer S and Mikeska H J 1998 Phys. Rev. B 57 13610
[8] Wu C J, Chen B, Dai X, Yu Y and Su Z B 1999 Phys. Rev. B 60 1057
[9] Li Y X and Chen B 2010 Phys. Lett. A 374 3514
[10] Chen B, Zhang Z F and Han R H 2004 Physica B 349 1
[11] Villain J 1974 J. Phys. (Paris) 35 27
[12] Hao B and Gong C D 1995 Phys. Rev. B 52 299

Related articles from Frontiers Journals
[1] Zi-Gang Yuan, Xin-Yu Zhang, He Zhao, Yan-Chao Li. Energy Variance in Decoherence[J]. Chin. Phys. Lett., 2020, 37(3): 060506
[2] Junjun Xu, Yanxing Li. Eigenstate Distribution Fluctuation of a Quenched Disordered Bose–Hubbard System in Thermal-to-Localized Transitions[J]. Chin. Phys. Lett., 2019, 36(2): 060506
[3] Rong-Qiang He, Zhong-Yi Lu. Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems[J]. Chin. Phys. Lett., 2018, 35(2): 060506
[4] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 060506
[5] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 060506
[6] ZHAO Jing, HU Ya-Yun, TONG Pei-Qing. The Effect of Quantum Coins on the Spreading of Binary Disordered Quantum Walk[J]. Chin. Phys. Lett., 2015, 32(06): 060506
[7] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 060506
[8] LI Min, ZHANG Yong-Sheng, GUO Gunag-Can. Quantum Random Walk in Periodic Potential on a Line[J]. Chin. Phys. Lett., 2013, 30(2): 060506
[9] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 060506
[10] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 060506
[11] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 060506
[12] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 060506
[13] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 060506
[14] ZHU Jing-Min. Quantum Phase Transitions in Matrix Product States[J]. Chin. Phys. Lett., 2008, 25(10): 060506
[15] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space[J]. Chin. Phys. Lett., 2008, 25(10): 060506
Viewed
Full text


Abstract