Chin. Phys. Lett.  2014, Vol. 31 Issue (06): 060503    DOI: 10.1088/0256-307X/31/6/060503
GENERAL |
Analytical Approach to Exact Solutions for the Wick-Type Stochastic Space-Time Fractional KdV Equation
Hossam A. Ghany1,2**
1Department of Mathematics, Faculty of Industrial Education Ameria (11282), Helwan University, Cairo, Egypt
2Department of Mathematics, Faculty of Science, Taif University, Hawea(888), Taif, Saudi Arabia
Cite this article:   
Hossam A. Ghany 2014 Chin. Phys. Lett. 31 060503
Download: PDF(435KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This study is devoted to giving an analytical approach to exact solutions for the Wick-type stochastic space-time fractional KdV equation. By means of Hermite transform, white noise theory, and the fractional Riccati equation method, we derive white noise functional solutions for the Wick-type stochastic space-time fractional KdV equations. Exact traveling wave solutions for the variable coefficients space-time fractional KdV equations are given by using the fractional Riccati equation method. The obtained results include soliton-like, periodic, and rational solutions.
Published: 26 May 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.30.Jr (Partial differential equations)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/6/060503       OR      https://cpl.iphy.ac.cn/Y2014/V31/I06/060503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hossam A. Ghany
[1] Jumarie G 2006 Comput. Math. Appl. 51 1367
[2] Holden H, ?sendal B, Ub?e J and Zhang T 1996 Stochastic Partial Differential Equations (Basel: Birhkuser) p 159
[3] Elwakil S A, El-labany S K, Zahran M A and Sabry R 2004 Chaos Solitons Fractals 19 1083
[4] Wadati M 1983 J. Phys. Soc. Jpn. 52 2642
[5] Xie Y 2003 Phys. Lett. A 310 161
[6] Xie Y 2004 Chaos Solitons Fractals 19 509
[7] Chen B and Xie Y 2006 J. Comput. Appl. Math. 197 345
[8] Chen B and Xie Y 2007 J. Comput. Appl. Math. 203 249
[9] Ghany H A 2011 Chin. J. Phys. 49 926
[10] Ghany H A and Hyder A 2013 J. Comput. Anal. Appl. 15 1332
[11] Ghany H A and Saad M 2012 Chin. J. Phys. 50 618
[12] Ghany H A, Okb El Bab A, Zabel A and Hyder A 2013 Chin. Phys. B 22 080501
[13] Golbabai A and Sayevand K 2010 Nonlinear Sci. Lett. A 1 147
[14] Golbabai A and Sayevand K 2011 Comput. Math. Appl. 62 1003
[15] Sweilam N H, Khader M M and Al-Bar 2007 Phys. Lett. A 371 26
[16] Daftardar-Gejji V and Jafari H 2007 Appl. Math. Comput. 189 541
[17] Daftardar-Gejji V and Bhalekar S 2008 Appl. Math. Comput. 202 113
[18] Zhang J L, Ren D F and Wang M L 2003 Chin. Phys. 12 825
[19] Zhang S, Zong Q A, Liu D and Gao Q 2010 Communication Fractional Calculus 1 48
[20] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[21] Benth E and Gjerde J 1998 Potential Anal. 8 179
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 060503
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 060503
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 060503
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 060503
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 060503
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 060503
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 060503
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 060503
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 060503
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 060503
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 060503
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 060503
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 060503
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 060503
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 060503
Viewed
Full text


Abstract