GENERAL |
|
|
|
|
Analytical Approach to Exact Solutions for the Wick-Type Stochastic Space-Time Fractional KdV Equation |
Hossam A. Ghany1,2** |
1Department of Mathematics, Faculty of Industrial Education Ameria (11282), Helwan University, Cairo, Egypt 2Department of Mathematics, Faculty of Science, Taif University, Hawea(888), Taif, Saudi Arabia
|
|
Cite this article: |
Hossam A. Ghany 2014 Chin. Phys. Lett. 31 060503 |
|
|
Abstract This study is devoted to giving an analytical approach to exact solutions for the Wick-type stochastic space-time fractional KdV equation. By means of Hermite transform, white noise theory, and the fractional Riccati equation method, we derive white noise functional solutions for the Wick-type stochastic space-time fractional KdV equations. Exact traveling wave solutions for the variable coefficients space-time fractional KdV equations are given by using the fractional Riccati equation method. The obtained results include soliton-like, periodic, and rational solutions.
|
|
Published: 26 May 2014
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
|
|
|
[1] Jumarie G 2006 Comput. Math. Appl. 51 1367 [2] Holden H, ?sendal B, Ub?e J and Zhang T 1996 Stochastic Partial Differential Equations (Basel: Birhkuser) p 159 [3] Elwakil S A, El-labany S K, Zahran M A and Sabry R 2004 Chaos Solitons Fractals 19 1083 [4] Wadati M 1983 J. Phys. Soc. Jpn. 52 2642 [5] Xie Y 2003 Phys. Lett. A 310 161 [6] Xie Y 2004 Chaos Solitons Fractals 19 509 [7] Chen B and Xie Y 2006 J. Comput. Appl. Math. 197 345 [8] Chen B and Xie Y 2007 J. Comput. Appl. Math. 203 249 [9] Ghany H A 2011 Chin. J. Phys. 49 926 [10] Ghany H A and Hyder A 2013 J. Comput. Anal. Appl. 15 1332 [11] Ghany H A and Saad M 2012 Chin. J. Phys. 50 618 [12] Ghany H A, Okb El Bab A, Zabel A and Hyder A 2013 Chin. Phys. B 22 080501 [13] Golbabai A and Sayevand K 2010 Nonlinear Sci. Lett. A 1 147 [14] Golbabai A and Sayevand K 2011 Comput. Math. Appl. 62 1003 [15] Sweilam N H, Khader M M and Al-Bar 2007 Phys. Lett. A 371 26 [16] Daftardar-Gejji V and Jafari H 2007 Appl. Math. Comput. 189 541 [17] Daftardar-Gejji V and Bhalekar S 2008 Appl. Math. Comput. 202 113 [18] Zhang J L, Ren D F and Wang M L 2003 Chin. Phys. 12 825 [19] Zhang S, Zong Q A, Liu D and Gao Q 2010 Communication Fractional Calculus 1 48 [20] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) [21] Benth E and Gjerde J 1998 Potential Anal. 8 179 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|