CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular |
LI Bo-Xin1, ZHENG Jun1, CHI Feng2** |
1College of New Energy, Bohai University, Jinzhou 121013 2College of Engineering, Bohai University, Jinzhou 121013
|
|
Cite this article: |
LI Bo-Xin, ZHENG Jun, CHI Feng 2014 Chin. Phys. Lett. 31 057302 |
|
|
Abstract We study the heat generation by an electric current in a quantum dot (QD) molecular coupled to a single-model phonon bath in the Coulomb blockade regime. It is found that when the system is driven out of equilibrium by the thermal bias applied across the two terminals of the structure, the heat flowing between the QD and the phonon bath can be very small for one direction of the thermal bias, while it becomes quite large when the corresponding direction of the thermal bias is reversed. The device thus operates as a heat rectifier or heat diode. Moreover, the heat generation can be suppressed to negative values by the thermal bias. We emphasize that the above-mentioned two effects are beyond the reach of the usual electric bias.
|
|
Published: 24 April 2014
|
|
|
|
|
|
[1] Li N B, Ren J, Wang L, Zhang G, H?nggi P and Li B W 2012 Rev. Mod. Phys. 84 1045 [2] Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232 [3] Blencowe M P 1999 Phys. Rev. B 59 4992 [4] Schwab K, Henriksen E A, Worlock J M and Roules M L 2000 Nature 404 974 [5] Yamamoto T and Watanabe K 2006 Phys. Rev. Lett. 96 255503 [6] Sun Q F and Xie X C 2007 Phys. Rev. B 75 155306 [7] Lü J T and Wang J S 2007 Phys. Rev. B 76 165418 [8] Wu B H and Cao J C 2009 J. Phys.: Condens. Matter 21 245301 [9] Balandin A 2011 Nat. Mater. 10 569 [10] Huang Z, Xu B Q, Chen Y C, Di Ventra M and Tao N J 2006 Nano Lett. 6 1240 [11] Huang Z, Chen F, D'Agosta R, Bennett P A, Di Ventra M and Tao N J 2007 Nat. Nanotechnol. 2 698 [12] Oron-Carl M and Krupke R 2008 Phys. Rev. Lett. 100 127401 [13] Wang J S, Wang J and Lü J T 2008 Eur. Phys. J. B 62 381 [14] Lazzeri M, Piscanec S, Mauri F, Ferrari A C and Robertson J 2005 Phys. Rev. Lett. 95 236802 [15] Liu J, Song J T, Sun Q F and Xie X C 2009 Phys. Rev. B 79 161309(R) [16] Pei W, Xie X C and Sun Q F 2012 J. Phys.: Condens. Matter 24 415302 [17] Pei W and Sun Q F 2012 J. Appl. Phys. 112 124306 [18] Zhou L L and Li Y J 2012 Phys. Lett. A 376 2506 [19] Zhou L L 2011 Chin. Phys. Lett. 28 128504 [20] Zhou L L and Wei J N 2011 Phys. Lett. A 375 3916 [21] Zhou L L, Li S S, Wei J N and Wang S Q 2011 Phys. Rev. B 83 195303 [22] Zhou L L, Li S S and Zeng Z Y 2009 Chin. Phys. Lett. 26 037304 [23] Deng Y X, Yan X H, Xiao Y and Tang N S 2010 Phys. Lett. A 374 4375 [24] Wang Q, Xie H, Jiao H and Nie Y H 2013 Europhys. Lett. 101 47008 [25] Chen Q and Zhang Y M 2010 Commun. Theor. Phys. 54 171 [26] Chen Q and Deng Y H 2011 Commun. Theor. Phys. 56 517 [27] Chen Q, Xu M C and Wang Z Y 2013 Physica E 48 106 [28] Chen Q, Tang L M, Chen K Q and Zhao H K 2013 J. Appl. Phys. 114 084301 [29] Chen Q and Zhao H K 2008 Eur. Phys. J. B 64 237 [30] Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106 [31] Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324 [32] Wang R Q, Zhou Y Q, Wang B G and Xing D Y 2007 Phys. Rev. B 75 045318 [33] Liu Y S, Chen H, Fan X H and Yang X F 2006 Phys. Rev. B 73 115310 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|