Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 056803    DOI: 10.1088/0256-307X/31/5/056803
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors
MAO Xu1,3, LV Xing-Dong1,3, WEI Wei-Wei1,3, ZHANG Zhe2,3, YANG Jin-Ling1,3**, QI Zhi-Mei2,3, YANG Fu-Hua1
1Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Institute of Electronics, Chinese Academy of Sciences, Beijing 100190
3State Key Laboratory of Transducer Technology, Shanghai 200050
Cite this article:   
MAO Xu, LV Xing-Dong, WEI Wei-Wei et al  2014 Chin. Phys. Lett. 31 056803
Download: PDF(754KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Sn-rich Au–Sn solder bonding is systematically investigated. High shear strength (64 MPa) and good hermeticity (a leak rate lower than 1×10?7 torr?l/s) are obtained for Au–Sn solder with 54 wt% Sn bonded at 310°C. The AuSn2 phase with the highest Vickers-hardness among the four stable intermetallic compounds of the Au–Sn system makes a major contribution to the high bonding strength. This bonding technique has been successfully used to package the Surface Plasmon Resonance (SPR) sensors. The Sn-rich Au–Sn solder bonding provides a reliable, low-cost, low-temperature and wafer-level hermetic packaging solution for the micro-electromechanical system devices and has potential applications in high-end biomedical sensors.
Published: 24 April 2014
PACS:  62.20.-x (Mechanical properties of solids)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  61.82.Bg (Metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/056803       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/056803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MAO Xu
LV Xing-Dong
WEI Wei-Wei
ZHANG Zhe
YANG Jin-Ling
QI Zhi-Mei
YANG Fu-Hua
[1] Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C and Zhang F W 2014 Chin. Phys. B 23 026201
[2] Chen T, Hong T, Pan J Q, Chen W X, Cheng Y B, Wang Y, Ma X B, Liu W L, Zhao L J, Ran G Z, Wang W and Qin G G 2009 Chin. Phys. Lett. 26 064211
[3] Y L, Ou Y, Shi S L, Ma J, Chen D P and Ye T C 2008 Chin. Phys. B 17 2130
[4] Oppermann H 2006 Materials for Information Technology (London: Springer)
[5] Okamoto H and Massatski T B 1987 Phase Diagram of Binary Gold Alloys (Metals Park, OH: ASM International)
[6] Lee C C and Chuang R W 2003 IEEE Trans. Compon. Packag. Technol. 26 416
[7] Kim J S, Wang P J and Lee C C 2008 IEEE Trans. Compon. Packag. Technol. 31 719
[8] Matijasevic G S, Lee C C and Wang C Y 1993 Thin Solid Films 223 276
[9] Kim D, Kim J, Wang G L and Lee C C 2005 Mater. Sci. Eng. A 393 315
[10] Chromik R R, Wang D N, Shugar A, Limata L, Notis M R and Vinci R P 2005 J. Mater. Res. 20 161
[11] Buene L, FalkenbergArell H, Gj?nnes J and Taft? J 1980 Thin Solid Films 67 95
[12] Nakahara S, McCoy R J, Buene L and Vandenberg J M 1981 Thin Solid Films 84 185
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 056803
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 056803
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 056803
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 056803
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 056803
[6] Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li, Fa-Ming Gao. An Orthorhombic Phase of Superhard $o$-BC$_{4}$N[J]. Chin. Phys. Lett., 2019, 36(3): 056803
[7] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 056803
[8] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 056803
[9] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 056803
[10] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 056803
[11] GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming. Urtra-Hard Bonds in P-Carbon Stronger than Diamond[J]. Chin. Phys. Lett., 2015, 32(09): 056803
[12] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 056803
[13] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 056803
[14] FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei. Elastic and Dynamical Properties of YB4: First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(11): 056803
[15] SUN Qi-Cheng, ZHANG Guo-Hua, JIN Feng. The Stress Distribution in Polydisperse Granular Packings in Two Dimensions[J]. Chin. Phys. Lett., 2013, 30(2): 056803
Viewed
Full text


Abstract