Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 048702    DOI: 10.1088/0256-307X/31/4/048702
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Locking Function of a Key Residue in Kinesin's Gating Mechanism
GENG Yi-Zhao1, ZHANG Hui2, JI Qing2,3**, YAN Shi-Wei1**
1College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2School of Science, Hebei University of Technology, Tianjin 300401
3Institute of Biophysics, Hebei University of Technology, Tianjin 300401
Cite this article:   
GENG Yi-Zhao, ZHANG Hui, JI Qing et al  2014 Chin. Phys. Lett. 31 048702
Download: PDF(1177KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In kinesin's mechanochemical cycle, ATP's binding to the nucleotide-free leading head is exquisitely gated so that futile hydrolysis is effectively avoided. Experiments show that, when both kinesin heads bind to a microtubule, ATP cannot bind to kinesin's leading head when the neck linker (NL) of this head has a backward orientation. How NL's backward orientation is maintained needs understanding on a structural basis. By using steered molecular dynamics and mutation simulations, we investigate the backward-pointing conformation of the leading head's NL under different inter-head tensions. We find that the NL cannot keep in a strict backward orientation solely by the inter-head tension. LYS325 (amino acid sequence in 2KIN) has an assistant locking function which locks the NL and β0 to the β-domain. This locking function has an enhanced positive cooperation with the inter-head tension. When the inter-head tension is weakened, this locking function can be broken, resulting in a loose backward orientation of the NL. The difference between the strict and loose backward orientation of the NL might be a crucial factor in the gating mechanism. These results are consistent with relevant experiments and proposals.
Received: 14 November 2013      Published: 25 March 2014
PACS:  87.16.Nn (Motor proteins (myosin, kinesin dynein))  
  87.10.Tf (Molecular dynamics simulation)  
  87.15.hp (Conformational changes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/048702       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/048702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GENG Yi-Zhao
ZHANG Hui
JI Qing
YAN Shi-Wei
[1] Lawrence C J et al 2004 J. Cell Biol. 167 19
[2] Vale R D 2003 Cell 112 467
[3] Svoboda K et al 1993 Nature 365 721
[4] Hirokawa N et al 2009 Nat. Rev. Mol. Cell Biol. 10 682
[5] Rice S et al 1999 Nature 402 778
[6] Vale R D and Milligan R A 2000 Science 288 88
[7] Tomishige M et al 2006 Nat. Struct. Mol. Biol. 13 887
[8] Sablin E P and Fletterick R J 2004 J. Biol. Chem. 279 15707
[9] Block S M 2007 Biophys. J. 92 2986
[10] Valentine M T and Gillbert S P 2007 Curr. Opin. Cell Biol. 19 75
[11] Hua W et al 1997 Nature 388 390
[12] Schnitzer M J and Block S M 1997 Nature 388 386
[13] Coy D L, Wagenbach M and Howard J 1999 J. Biol. Chem. 274 3667
[14] Berliner E et al 1995 Nature 373 718
[15] Hancock W O and Howard J 1998 J. Cell Biol. 140 1395
[16] Toprak E et al 2009 Proc. Natl. Acad. Sci. USA 106 12717
[17] Hariharan V and Hancock W 2009 Cell. Mol. Bioeng. 2 177
[18] Xie P 2010 Int. J. Biol. Sci. 6 665
[19] Rosenfeld S S et al 2002 J. Biol. Chem. 277 36731
[20] Rosenfeld S S et al 2003 J. Biol. Chem. 278 18550
[21] Uemura S and Ishiwata S 2003 Nat. Struct. Mol. Biol. 10 308
[22] Clancy B E et al 2011 Nat. Struct. Mol. Biol. 18 1020
[23] Xie P et al 2005 Chin. Phys. B 14 734
[24] Hancock W O and Howard J 1999 Proc. Natl. Acad. Sci. USA 96 13147
[25] Schief W R et al 2004 Proc. Natl. Acad. Sci. USA 101 1183
[26] Crevel I et al 2004 EMBO J. 23 23
[27] Geng Y Z et al 2014 Arch. Biochem. Biophys. 543 10
[28] Guydosh N R and Block S M 2006 Proc. Natl. Acad. Sci. USA 103 8054
[29] Yildiz A et al 2008 Cell 134 1030
[30] Shastry S and Hancock W O 2011 Proc. Natl. Acad. Sci. USA 108 16253
[31] Phillips J C et al 2005 J. Comput. Chem. 26 1781
[32] MacKerell A D et al 1998 J. Phys. Chem. B 102 3586
[33] Humphrey W et al 1996 J. Mol. Graphics 14 33
[34] Jorgensen W L et al 1983 J. Chem. Phys. 79 926
[35] Geng Y Z et al 2013 arXiv:1309.5173 [physics.bio-ph]
[36] Sack S et al 1997 Biochemistry 36 16155
[37] Jon Kull F et al 1996 Nature 380 550
[38] Geng Y Z et al 2014 Cell. Mol. Bioeng. 7 99
[39] Hwang W et al 2008 Structure 16 62
[40] Khalil A S et al 2008 Proc. Natl. Acad. Sci. USA 105 19247
[41] Walliams D H et al 2004 Angew. Chem. Int. Ed. 43 6596
[42] Mori T et al 2007 Nature 450 750
[43] Asenjo A B et al 2003 Nat. Struct. Mol. Biol. 10 836
[44] Sosa H et al 2001 Nat. Struct. Mol. Biol. 8 540
[45] Kikkawa M 2008 Trends Cell Biol. 18 128
Related articles from Frontiers Journals
[1] Yu-Ru Liu, Peng-Ye Wang, Wei Li, and Ping Xie. Acceleration of DNA Replication of Klenow Fragment by Small Resisting Force[J]. Chin. Phys. Lett., 2021, 38(11): 048702
[2] Yi-Zhao Geng, Hui Zhang, Gang Lyu, Qing Ji. Initiation Mechanism of Kinesin's Neck Linker Docking Process[J]. Chin. Phys. Lett., 2017, 34(2): 048702
[3] HUANG Yan-Bin, PAN Zhang, ZHANG Hui, AN Li, KONG De-Xin, JI Qing. Water in the Neck-Zipper Region of Kinesin[J]. Chin. Phys. Lett., 2009, 26(7): 048702
[4] SUN Lian-Xiu. Rectification Efficiency of Two Harmonically Coupled Particles[J]. Chin. Phys. Lett., 2009, 26(4): 048702
[5] WANG Hong, DOU Shuo-Xing, WANG Peng-Ye. Monte Carlo Simulation on Coordinated Movement of Kinesin and Dynein Motors[J]. Chin. Phys. Lett., 2008, 25(1): 048702
[6] WANG Hong, DOU Shuo-Xing, WANG Peng-Ye. Monte Carlo Simulation of Kinesin Movement with a Lattice Model[J]. Chin. Phys. Lett., 2005, 22(11): 048702
[7] GAO De, JI Qing, Lü Gang. How Is a Protein Molecule Nearsighted?[J]. Chin. Phys. Lett., 2005, 22(9): 048702
[8] FENG Juan, ZHUO Yi-Zhong,. Master Equation Approach to Molecular Motor’s Directed Motion[J]. Chin. Phys. Lett., 2005, 22(2): 048702
Viewed
Full text


Abstract