Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 047803    DOI: 10.1088/0256-307X/31/4/047803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improvement of the Injection and Transport Characteristics of Electrons in Organic Light-Emitting Diodes by Utilizing a NaCl N-Doped Layer
XIAO Zhi-Hui, WU Xiao-Ming**, HUA Yu-Lin**, WANG Li, BI Wen-Tao, BAI Juan-Juan, MU Xue, YIN Shou-Gen
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300384 Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin 300384
Cite this article:   
XIAO Zhi-Hui, WU Xiao-Ming, HUA Yu-Lin et al  2014 Chin. Phys. Lett. 31 047803
Download: PDF(521KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The injection and transport characteristics of electrons are enhanced by using sodium chloride (NaCl) as an n-type dopant doped into a 4,7-diphnenyl-1, 10-phe-nanthroline (Bphen) electron-transporting layer, which improves the performance of organic light-emitting diodes (OLEDs). Meanwhile, a NaCl-doped Bphen layer can effectively influence electrical characteristics of the devices, and significantly improve the current and power efficiency. The turn-on voltage and the operation voltage of the optimal device are decreased drastically from 6.5 V and 10.8 V to 3.3 V and 5 V, respectively, compared with those of the reference device. The maximum current efficiency and power efficiency of the optimal device are 7.0 cd/A and 4.4 lm/W at the current density of 16.70 mA/cm2, which are about 1.7 and 4 times higher than those of the reference device, respectively. Moreover, the enhancement of the injection and transport ability for electrons is attributed not only to the reduced energy barrier between Al cathode and Bphen, but also to the increased mobility of electrons by the doping effect of NaCl. Therefore, both the electron injection and transport ability are enhanced, which improve the carrier balance in OLEDs and lead to the better device efficiency.
Received: 28 October 2013      Published: 25 March 2014
PACS:  78.60.Fi (Electroluminescence)  
  85.35.Gv (Single electron devices)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/047803       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/047803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Zhi-Hui
WU Xiao-Ming
HUA Yu-Lin
WANG Li
BI Wen-Tao
BAI Juan-Juan
MU Xue
YIN Shou-Gen
[1] Reineke S et al 2009 Nature 459 234
[2] Tamtekar K T et al 2010 Adv. Mater. 22 572
[3] Jiao Z Q, Wu X M, Hua Y L, Mu X, Bi W T, Bai J J and Yin S G 2012 Chin. Phys. B 21 067202
[4] Antoniadis H, Abkowitz M A and Hsieh B R 1994 Appl. Phys. Lett. 65 2030
[5] Cao G H, Qin D S, Guan M, Cao J S, Zeng Y P and Li J M 2008 Chin. Phys. B 17 191105
[6] Wemken J K, Krause R, Mikolajick T and Schmid G 2012 J. Appl. Phys. 111 074502
[7] Huang J, Xu Z and Yang Y 2007 Adv. Funct. Mater. 17 1966
[8] Yook K S, Jeon S O, Min S Y, Lee J Y, Yang H J, Noh T, Kang S K and Lee T W 2010 Adv. Funct. Mater. 20 1797
[9] Leem D S, Lee J H, Kim J J and Kang J W 2008 Appl. Phys. Lett. 93 103304
[10] Yuan Y, Grozea D, Han S and Lu Z H 2004 Appl. Phys. Lett. 85 4959
[11] Park Y W, Choi J H, Park T H, Song E H, Kim H, Lee H J, Shin S j, Ju B K and Song W J 2012 Appl. Phys. Lett. 100 013312
[12] Serena P A, Soler J M and Garcia N 1988 Phys. Rev. B 37 8701
[13] Chen M H, Chen Y H, Lin C T, Lee G R, Wu C L, Leem D S, Kim J J and Pi T W 2009 J. Appl. Phys. 105 113714
[14] Hsieh M T, Chang C C, Chen J F and Chen C H 2006 Appl. Phys. Lett. 89 103510
[15] Kido J and Matsumoto T 1998 Appl. Phys. Lett. 73 2866
[16] Murgatroyd P N 1970 J. Phys. D: Appl. Phys. 3 151
[17] Martens H C F, Blom P W M and Schoo H F M 2000 Phys. Rev. B 61 7489
[18] Naka S, Okada H, Onnagawa H and Tsutsui T 2000 Appl. Phys. Lett. 76 197
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 047803
[2] Lehua Gu, Shuang Wu, Shuai Zhang, and Shiwei Wu. Nanoscale Impact Ionization and Electroluminescence in a Biased Scanning-Tunneling-Microscope Junction[J]. Chin. Phys. Lett., 2022, 39(3): 047803
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 047803
[4] Qi Wang, Jun-Chi Yu, Tao Tao, Bin Liu, Ting Zhi, Xu Cen, Zi-Li Xie, Xiang-Qian Xiu, Yu-Gang Zhou, You-Dou Zheng, Rong Zhang. Fabrication and Characterization of GaN-Based Micro-LEDs on Silicon Substrate[J]. Chin. Phys. Lett., 2019, 36(8): 047803
[5] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 047803
[6] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 047803
[7] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 047803
[8] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 047803
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 047803
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 047803
[11] Xiao-Wang Fan, Jian-Ping Liu, Feng Zhang, Masao Ikeda, De-Yao Li, Shu-Ming Zhang, Li-Qun Zhang, Ai-Qin Tian, Peng-Yan Wen, Guo-Hong Ma, Hui Yang. Effect of Droop Phenomenon in InGaN/GaN Blue Laser Diodes on Threshold Current[J]. Chin. Phys. Lett., 2017, 34(9): 047803
[12] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 047803
[13] Wei-Jing Qi, Long-Quan Xu, Chun-Lan Mo, Xiao-Lan Wang, Jie Ding, Guang-Xu Wang, Shuan Pan, Jian-Li Zhang, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. The Efficiency Droop of InGaN-Based Green LEDs with Different Superlattice Growth Temperatures on Si Substrates via Temperature-Dependent Electroluminescence[J]. Chin. Phys. Lett., 2017, 34(7): 047803
[14] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 047803
[15] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 047803
Viewed
Full text


Abstract