Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 047701    DOI: 10.1088/0256-307X/31/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
An Enhanced Photoelectric Conversion Efficiency of n-Type Crystalline Silicon p–n Junctions Using a Ferroelectric Passivation Layer
LI Zi-Zhen1, TANG Rong-Sheng2, WANG Xiao-Feng1, ZHENG Fen-Gang1**
1Department of Physics and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006
2Department of Electronic and Information Engineering, Taizhou Polytechnic College, Taizhou 225300
Cite this article:   
LI Zi-Zhen, TANG Rong-Sheng, WANG Xiao-Feng et al  2014 Chin. Phys. Lett. 31 047701
Download: PDF(972KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A multilayered structure consisting of ferroelectric Pb(Zr,Ti)O3 (PZT) film is deposited by sputtering on the crystalline silicon p-n junction without any buffer layer. The photovoltaic output of the p-n junction is greatly enhanced due to the usage of In2O3:Sn(ITO)/PZT as top surface passivation layers. The short circuit current and photoelectric conversion efficiency of the p-n junction with ITO/PZT ferroelectric films increase about four and six times, respectively, compared with those without any passivation layers. Improvement in the passivated device is mainly attributed to the built-in field at the ITO/PZT interface.
Received: 03 January 2014      Published: 25 March 2014
PACS:  77.55.fg (Pb(Zr,Ti)O3-based films)  
  77.55.df (For silicon electronics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/047701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/047701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zi-Zhen
TANG Rong-Sheng
WANG Xiao-Feng
ZHENG Fen-Gang
[1] Yang X L et al 2012 Adv. Mater. 24 1202
[2] Cao D W et al 2012 Nano Lett. 12 2803
[3] Cao D W et al 2012 J. Mater. Chem. 22 12592
[4] Pintilie L et al 2011 J. Appl. Phys. 110 044105
[5] Harshan V N and Kotru S 2012 Appl. Phys. Lett. 100 173901
[6] Chen B et al 2012 Appl. Phys. Lett. 100 173903
[7] Delimov L A and Yuferev V S 2010 J. Appl. Phys. 108 084110
[8] Zhang P et al 2012 Mater. Chem. Phys. 135 304
[9] Cao D W et al 2011 Mater. Chem. Phys. 129 783
[10] Cao D W et al 2010 Appl. Phys. Lett. 96 192101
[11] Won C J et al 2011 J. Appl. Phys. 109 084108
[12] Young S M and Rappe A M 2012 Phys. Rev. Lett. 109 116601
[13] Choi T et al 2009 Science 324 63
[14] Ji W et al 2010 Adv. Mater. 22 1763
[15] Yi H T et al 2011 Adv. Mater. 23 3403
[16] Yang S Y et al 2009 Appl. Phys. Lett. 95 062909
[17] Ye W et al 2013 Surf. Sci. 609 147
[18] Einsele F et al 2012 J. Appl. Phys. 112 054905
[19] Watanabe K et al 2012 Appl. Phys. Lett. 101 153902
[20] Chowdhury Z R et al 2012 Appl. Phys. Lett. 101 021601
[21] Cast P S et al 2009 Appl. Phys. Lett. 95 151502
[22] Zhou S et al 2013 Sol. Energy Mater. Sol. Cells 108 44
[23] Han G F et al 2011 J. Appl. Phys. 110 124101
[24] Baldisserri C et al 2012 Sens. Actuators A 174 123
[25] Fahrner W R et al 2005 J. Electrochem. Soc. 152 G819
[26] Lee S U et al 2007 J. Appl. Phys. 102 044107
[27] Wei S Y et al 2013 CrystEngComm 15 1680
[28] Joo W et al 2010 Langmuir 26 5110
[29] Lin L J H and Chiou Y P 2012 Sol. Energy 86 1485
Viewed
Full text


Abstract