CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effect of the Minimal Length on the Thermodynamics of Ultra-Relativistic Ideal Fermi Gas |
ZHANG Xiu-Ming**, SUN Jiu-Xun, YANG Li |
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
|
|
Cite this article: |
ZHANG Xiu-Ming, SUN Jiu-Xun, YANG Li 2014 Chin. Phys. Lett. 31 047301 |
|
|
Abstract Based on the generalized uncertainty principle, the thermodynamics of Fermi gas in high density, high pressure and high temperature are calculated. As the temperature and density increases, the energy and entropy becomes saturated and the pressure blows up without any bound. Using the conservation equation of the Robertson–Walker cosmology, we find that, when the energy exceeds the EH=β0?1/2c2Mp, the expansion cannot be driven by the photon gas and the fermion gas. This requires some new physical mechanism related to quantum gravity, such as tachyons and dilatons.
|
|
Received: 20 December 2013
Published: 25 March 2014
|
|
|
|
|
|
[1] Veneziano G 1986 Europhys. Lett. 2 199 [2] Gross D J and Mende P F 1988 Nucl. Phys. B 303 407 [3] Amati D, Ciafaloni M and Veneziano G 1989 Phys. Lett. B 216 41 [4] Konishi K, Paffuti G and Provero P 1990 Phys. Lett. B 234 276 [5] Guida R, Konishi K and Provero P 1991 Mod. Phys. Lett. A 6 1487 [6] Maggiore M 1993 Phys. Lett. B 319 83 [7] Maggiore M 1993 Phys. Lett. B 304 65 [8] Garay L J 1995 Int. J. Mod. Phys. A 10 145 [9] Kempf A, Mangano G and Mann R B 1995 Phys. Rev. D 52 1108 [10] Kempf A 1992 Lett. Math. Phys. 26 1 [11] Kempf A 1993 J. Math. Phys. 34 969 [12] Kempf A 1994 J. Math. Phys. 35 4483 [13] Das S and Vagenas E C 2008 Phys. Rev. Lett. 101 221301 [14] Brau F and Buisseret F 2006 Phys. Rev. D 74 036002 [15] Zhang X Y, Shao L J and Ma B Q 2011 Astropart. Phys. 34 840 [16] Chandra N and Chatterjee S 2012 Phys. Rev. D 85 045012 [17] Rama S K 2001 Phys. Lett. B 519 103 [18] Rama S K 2002 arXiv:hep-th/0204215 [19] Chang L N, Minic D, Okamura N and Takeuchi T 2002 Phys. Rev. D 65 125028 [20] Nozari K and Mehdipour S H 2007 Chaos Solitons Fractals 32 1637 [21] Fityo T V 2008 Phys. Lett. A 372 5872 [22] Wang P, Yang H T and Zhang X M 2010 J. High Energy Phys. 1008 043 [23] Wang P, Yang H T and Zhang X M 2012 Phys. Lett. B 718 265 [24] Greiner W, Neise L and St?cker H 1995 Thermodynamics and Statistical Physics (New York: Springer) [25] McAllister L and Silverstein E 2008 Gen. Rel. Grav. 40 565 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|