CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Growth and Morphology of Magnetron-Sputtered TiAl Alloy Thin Films Studied by Atomic Force Microscopy |
SHUI Lu-Yu1,2, YAN Biao1,2** |
1School of Materials Science and Engineering, Tongji University, Shanghai 201804 2Shanghai Key Lab of Development and Application for Metal-Functional Materials, Shanghai 201804
|
|
Cite this article: |
SHUI Lu-Yu, YAN Biao 2014 Chin. Phys. Lett. 31 046802 |
|
|
Abstract At the aim of investigating the growth mechanism and morphology evolution of magnetron-sputtered TiAl alloy thin films, we observe the films deposited for different times and find out the variation by atomic force microscopy. Nucleation mechanism and growth kinetics are studied by dynamic scaling, obtained from the morphology evolution of as-deposited TiAl thin films with different growth times. As a result, we demonstrate that the process of film growth goes through three stages, divided by three different growth exponents. The three growth exponents are β1=0.52±0.01, β2=0.71±0.01, and β3=0.17±0.02, respectively. With the deposition time varying from 2 min to 10 min, the roughness exponent α fluctuates in the range 0.61–1.16.
|
|
Received: 20 November 2013
Published: 25 March 2014
|
|
|
|
|
|
[1] Zhang W J, Reddy B V and Deevi S C 2001 Scr. Mater. 45 645 [2] Veeraraghavan D, Pilchowski U, Natarajan B and Vasudevan V K 1998 Acta Mater. 46 405 [3] Chan K S and Kim Y W 1995 Acta Metall. Mater. 43 439 [4] Vieiraa M T, Trindade B, Ramos A S, Fernandes J V and Vieira M F 2002 Mater. Sci. Eng. A 329 147 [5] Liu C T, Schneibel J H, Maziasz P J, Wright J L and Easton D S 1996 Intermetallics 4 429 [6] Qu X X, Zhang Q X, Zou Q B, Yang P, Balasubramanian N and Zeng K Y 2002 Mater. Sci. Semicond. Process. 5 35 [7] Senkov O N and Uchic M D 2003 Mater. Sci. Eng. A 340 216 [8] Senkov O N, Uchic M D, Menon S and Miracle D B 2002 Scr. Mater. 46 187 [9] Ramos A S and Vieira M T 2005 Surf. Coat. Technol. 200 326 [10] Rajarshi B, Subramanian S, Robert W and Hamish L F 2000 Philos. Mag. A 80 1715 [11] Alford T L, Gadre K S, Kim H C and Deevi S C 2003 Appl. Phys. Lett. 83 455 [12] Vieira M T, Trindade B, Ramos A S, Fernandes J V and Vieira M F 2002 Mater. Sci. Eng. A 329 147 [13] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889 [14] Family F and Vicsek T 1985 J. Phys. A 18 L75 [15] Lita A E and Sanchez J E 2000 Phys. Rev. B 61 7692 [16] Abreu G J P, Paniago R and Pfannes H D 2014 J. Magn. Magn. Mater. 349 235 [17] Hwang C, Kim J, Ryu B K and Takebe H 2013 J. Mater. Sci. 48 8068 [18] Fu S F, Chen C Y, Li F W, Hsu C H, Chou W C, Chen W K and Ke W C 2013 J. Cryst. Growth 383 106 [19] Park J H, Cuong H B, Jeong S H and Lee B T 2013 Vacuum 97 15 [20] Hildebrandt S, Komissinskiy P, Major M, Donner W and Alff L 2013 Thin Solid Films 545 291 [21] Mitchell M W and Bonnell D A 1990 J. Mater. Res. 5 2244 [22] Biscarini F, Samori P, Greco O and Zamboni R 1997 Phys. Rev. Lett. 78 2389 [23] Lita A E and Sanchez J E J 1999 J. Appl. Phys. 85 876 [24] Pimentel C, Pina C M and Gnecco E 2013 Cryst. Growth Des. 13 2557 [25] Kato Y, Umezawa H, Shikata S I and Touge M 2013 Appl. Phys. Express 6 025506 [26] Liu Z W, Gu J F, Sun C W and Zhang Q Y 2006 Acta Phys. Sin. 55 1965 (in Chinese) [27] Fan P, Li Y Z, Zheng Z H, Lin Q Y, Luo J T, Liang G X, Zhang M Q and Chen M C 2013 Appl. Surf. Sci. 284 145 [28] Feng K and Li Z G 2013 Thin Solid Films 544 224 [29] Kageshima H, Hibino H, Nagase M and Yamaguchi H 2009 Appl. Phys. Express 2 065502 [30] Wang E G 2003 Prog. Phys. 23 145 [31] Adriana E L and John E S 2000 Phys. Rev. B 61 7692 [32] Lee N E and Cahill D G 1996 Phys. Rev. B 53 12 [33] Yang J J and Xu K W 2007 Acta Phys. Sin. 56 6023 (in Chinese) [34] Vidali G and Zeng H 1996 Appl. Surf. Sci. 92 11 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|