CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Crystallization Kinetics Study on Magnetron-Sputtered Amorphous TiAl Alloy Thin Films |
SHUI Lu-Yu, YAN Biao** |
School of Materials Science and Engineering, Tongji University, Shanghai 201804 Shanghai Key Lab of D&A for Metal-Functional Materials, Shanghai 201804
|
|
Cite this article: |
SHUI Lu-Yu, YAN Biao 2014 Chin. Phys. Lett. 31 046103 |
|
|
Abstract Crystallization kinetics of magnetron-sputtered amorphous TiAl alloy thin films is investigated by differential scanning calorimetry through isothermal analysis and non-isothermal analysis. In non-isothermal analysis, the Kissinger method and the Ozawa method are used to calculate the apparent activation energy and local activation energy, respectively, in the crystallization processes of amorphous TiAl thin films. Furthermore, the crystallization mechanism is discussed from the investigation of the Avrami exponent by isothermal analysis. In addition, x-ray diffraction is utilized to reveal the grain orientation and evolution during the crystallization of TiAl thin films.
|
|
Received: 31 October 2013
Published: 25 March 2014
|
|
PACS: |
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
64.60.-i
|
(General studies of phase transitions)
|
|
64.70.kd
|
(Metals and alloys)
|
|
|
|
|
[1] Yamazaki T, Okumura Y, Desaki K, Kikuta T, Anada H and Nakatani N 2009 Vacuum 84 756 [2] Musi J and Hruby H 2000 Thin Solid Films 365 104 [3] Li D F, Huang J L and Lin M H 1998 Surf. Coat. Tech. 99 197 [4] Qu X X, Zhang Q X, Zou Q B, Yang P, Balasubramanian N and Zeng K Y 2002 Mat. Sci. Semicon. Proc. 5 35 [5] Oka N, Aoi T, Hayashi R, Kumomi H and Shigesato Y 2012 Appl. Phys. Express 5 075802 [6] Padmaprabu C, Kuppusami P, Singh A, Mohandas E and Raghunathan V S 2001 Scr. Mater. 44 1837 [7] Ipaz L, Aperador W, Caicedo J C, Esteve J and Zambrano G 2013 J. Mater. Eng. Perform. 22 1471 [8] Senkov O N, Uchic M D, Menon S and Miracle D B 2002 Scr. Mater. 46 187 [9] Alford T L, Gadre K S and Kim H C 2003 Appl. Phys. Lett. 83 455 [10] Banerjee R, Swaminathan S, Wheeler R and Fraser H L 2000 Philos. Mag. A 80 1715 [11] Vieira M T, Trindade B, Ramos A S, Fernandes J V and Vieira M F 2002 Mater. Sci. Eng. A 329 147 [12] Ramos A S and Vieira M T 2005 Surf. Coat. Tech. 200 326 [13] Avrami M 1940 J. Chem. Phys. 8 212 [14] Avrami M 1941 J. Chem. Phys. 9 177 [15] Zhang X R, Wuttig M 2004 Chin. Phys. Lett. 21 1096 [16] Hoang N L H, Hirose Y, Nakao S and Hasegawa T 2011 Appl. Phys. Express 4 105601 [17] T Ozawa 1986 J. Therm. Anal. 31 547 [18] Zuzjakova S, Zeman P and Kos S 2013 Thermochim. Acta 572 85 [19] Barandiaran J M, Teller I, Garitaonandia J S and Davies H A 2003 J. Non-Cryst. Solids 329 57 [20] Men H, Pang S J, Li R and Zhang 2006 Chin. Phys. Lett. 23 417 [21] Avrami M 1939 J. Chem. Phys. 7 1103 [22] Liu K T and Duh J G 2008 J. Non-Cryst. Solids 354 3159 [23] Peng L, Li L Z, Yang D Y and Zhu X H 2012 J. Magn. Magn. Mater. 324 1539 [24] Calka A, Radinski A P 1988 J. Mater. Res. 3 59 [25] Lu W, Yang L, Yan B and Huang W H 2006 J. Alloys Compd. 420 186 [26] Suryanarayana C, Behn R, Klassen T and Bormann R 2013 Mater. Sci. Eng. A 579 18 [27] Prasanna S and Spearing S M 2007 J. Microelectromech. System 16 248 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|