CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Synergistic Effect of Triple Ion Beams on Radiation Damage in CLAM Steel |
YUAN Da-Qing1, ZHENG Yong-Nan1, ZUO Yi1, FAN Ping1, ZHOU Dong-Mei1, ZHANG Qiao-Li1, MA Xiao-Qiang1, CUI Bao-Qun1, CHEN Li-Hua1, JIANG Wei-Sheng1, WU Yi-Can2, HUANG Qun-Ying2, PENG Lei2, CAO Xing-Zhong3, WANG Bao-Yi3, WEI Long3, ZHU Sheng-Yun1** |
1China Institute of Atomic Energy, Beijing 102413 2Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei 230031 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039
|
|
Cite this article: |
YUAN Da-Qing, ZHENG Yong-Nan, ZUO Yi et al 2014 Chin. Phys. Lett. 31 046101 |
|
|
Abstract The synergistic effect of triple ion beams is investigated by simultaneous and sequential irradiations of gold, hydrogen and helium ions on the low activation martensitic steel (CLAM) developed in China. The depth profile measurements of the positron annihilation Doppler broadening S parameter are carried out as a function of slow-positron beam energy to examine the produced radiation damage. The synergistic effect of displacement damage and hydrogen and helium on the formation of radiation damage is clearly observed. In the preset case ,this effect suppresses the radiation damage in the CLAM steel due to the helium and/or hydrogen filling of vacancy clusters.
|
|
Received: 23 September 2013
Published: 25 March 2014
|
|
PACS: |
61.82.Bg
|
(Metals and alloys)
|
|
61.72.Cc
|
(Kinetics of defect formation and annealing)
|
|
78.70.Bj
|
(Positron annihilation)
|
|
|
|
|
[1] Fluss M J 2009 LLNLCONF415877 [2] M?slang A 2007 Workshop Proc (OECD Nuclear Energy Agency, Germany) [3] Ando M, Wakai E, Sawai T et al 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 3178 [4] Tanigawa H, Furuya K, Jitsukawa S et al 2004 J. Nucl. Mater. 329 1137 [5] Wakai E, Ando M, Sawai T et al 2006 J. Nucl. Mater. 356 95 [6] Kikuchi K, Furuya K, Sato M et al 2002 J. Nucl. Mater. 41 549 [7] Zhu S Y, Zheng Y N, Polat A et al 2005 J. Nucl. Mater. 343 325 [8] Zheng Y N, Zuo Y, Xu Y J et al 2009 Probl. At. Sci. Technol. 4 89 [9] Zheng Y N, Zuo Y, Yuan D Q et al 2010 Nucl. Phys. A 834 761c [10] Zhu S Y, Iwata T, Xu Y et al 2004 Mod. Phys. Lett. B 18 881 [11] Liu S J, Huang Q Y, Li C J et al 2009 Fusion Eng. Des. 84 1214 [12] Liu Y F, Huang Q Y, Wu Y C et al 2007 Fusion Eng. Des. 82 2683 [13] Huang Q Y, Li C, Li Y et al 2007 Chin. J. Nucl. Sci. Eng. 27 41 [14] Xin Y, Qiu J, Ju X et al 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 3166 [15] Huang Q Y, Wu Y C, Li J G et al 2009 J. Nucl. Mater. 386 400 [16] Wang B Y, Cao X Z, Yu R S et al 2004 Mater. Sci. Forum 445 513 [17] Asoka-Kumar P, Lynn K G 1990 Appl. Phys. Lett. 57 1634 [18] Singh Amarjeet, Maji Sanjib and Nambissan P M G 2001 J. Phys.: Condens. Matter 13 177 [19] Rajainmaki H, Linderoth S, Hansen H E et al 1988 Phys. Rev. 38 1087 [20] Jensen K O, Eldrup M, Singhet B N et al 1988 J. Phys. F: Met. Phys. 18 1069 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|