Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 045201    DOI: 10.1088/0256-307X/31/4/045201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules
WANG Li-Feng1,2, WU Jun-Feng1, YE Wen-Hua1,2**, FAN Zheng-Feng1, HE Xian-Tu1,2**
1Institute of Applied Physics and Computational Mathematics, Beijing 100094
2HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871
Cite this article:   
WANG Li-Feng, WU Jun-Feng, YE Wen-Hua et al  2014 Chin. Phys. Lett. 31 045201
Download: PDF(585KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a design of indirect-drive pulse shape for inertial confinement fusion ignition capsules using laser energy 1.6 MJ with a moderate gain (~10) on the Shenguang IV laser facility. The trade-off fuel compression (pressure) for resistance to the hydrodynamic instability (HI) in the recent high-foot (HF) implosion campaign [Dittrich T R et al Phys. Rev. Lett. 112 (2014) 055002] is recovered. The proposed design modifies the "main" pulse shape, which features a decompression-recompression step for the fuel shell resulting in higher areal density than that of the "simple" HF design, and thereby approaches the conditions required for ignition avoiding at the expense of more laser energy while holding the HI under control.
Received: 26 February 2014      Published: 25 March 2014
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  52.38.Mf (Laser ablation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/045201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/045201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li-Feng
WU Jun-Feng
YE Wen-Hua
FAN Zheng-Feng
HE Xian-Tu
[1] Lindl J D et al 2004 Phys. Plasmas 11 339
[2] He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227
[3] Callahan D A et al 2012 Phys. Plasmas 19 056305
Robey H F et al 2012 Phys. Rev. Lett. 108 215004
Edwards M J et al 2013 Phys. Plasmas 20 070501
[4] Goncharov V and Hurricane O 2012 Panel 3: Implosion Hydrodynamics LLNL-TR-562014
[5] Regan S P et al 2013 Phys. Rev. Lett. 111 045001
[6] Clark D S et al 2013 Phys. Plasmas 20 056318
[7] Ye W et al 2002 Phys. Rev. E 65 057401
Ye W H et al 2010 Phys. Plasmas 17 122704
Wang L F et al 2012 Phys. Plasmas 19 100701
Wang L F et al 2010 Phys. Plasmas 17 122706
[8] Bodner S 1974 Phys. Rev. Lett. 33 761
H Takabe et al 1985 Phys. Fluids 28 3676
[9] Goncharov V N et al 2003 Phys. Plasmas 10 1906
Anderson K et al 2003 Phys. Plasmas 10 4448
[10] Hurricane O A 2013 APS DPP Meeting: High-Foot Implosion Campaign ed Dittrich T R
Hurricane O A 2014 Phys. Rev. Lett. 112 055002
Park H S et al 2014 Phys. Rev. Lett. 112 055001
Hurricane O A 2014 Nature 506 343
[11] Smalyuk V 2013 APS DPP Meeting: Hydrodynamic Instability Growth and Mix Experiments at the National Ignition Facility
[12] Herrmann M C et al 2001 Nucl. Fusion 41 99
[13] Fan Z et al 2012 Europhys. Lett. 99 65003
[14] Munro D H et al 2001 Phys. Plasmas 8 2245
Related articles from Frontiers Journals
[1] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 045201
[2] Tong Liu , Lai Wei , Feng Wang, and Zheng-Xiong Wang . Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 045201
[3] Hao Shi, Wenlu Zhang, Chao Dong, Jian Bao, Zhihong Lin, Jintao Cao, and Ding Li. Temperature Gradient, Toroidal and Ion FLR Effects on Drift-Tearing Modes[J]. Chin. Phys. Lett., 2020, 37(8): 045201
[4] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 045201
[5] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 045201
[6] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 045201
[7] Wen Yang, Ding Li, Xue-qiao Xu. Effect of Hyper-Resistivity on Nonlinear Tearing Modes[J]. Chin. Phys. Lett., 2018, 35(6): 045201
[8] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 045201
[9] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 045201
[10] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 045201
[11] Yi-Fan Yan, Zhong-Tian Wang, Zhi-Xiong He, Li-Ming Yu, Zhan-Hui Wang, Jia-Qi Dong, Hui-Dong Li, Hao Feng. Theoretical Analysis of the Frequency Jump in E-fishbone Experiments[J]. Chin. Phys. Lett., 2016, 33(01): 045201
[12] AZAM Hussain, GAO Bing-Xi, LIU Wan-Dong, XIE Jin-Lin, the EAST Team. Electron Cyclotron Emission Imaging Observations of m/n=1/1 and Higher Harmonic Modes during Sawtooth Oscillation in ICRF Heating Plasma on EAST[J]. Chin. Phys. Lett., 2015, 32(06): 045201
[13] XU Li-Qing, HU Li-Qun, CHEN Kai-Yun, LI Chang-Zheng, LI Er-Zhong, ZHAO Jin-Long, SHENG Xiu-Li, ZHANG Ji-Zong, MAO Song-Tao. Repetitive 'Snakes' and Their Damping Effect on Core Toroidal Rotation in EAST Plasmas with Multiple H–L–H Transitions[J]. Chin. Phys. Lett., 2014, 31(10): 045201
[14] SU Heng-Yi, HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, LU Wei. Quasi-Monoenergetic Electron Beam Generation from Nanothickness Solid Foils Irradiated by Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(07): 045201
[15] XU Li-Qing, HU Li-Qun, ZHANG Zi-Jun. Transient Appearance of Double Spontaneous-Snakes in EAST H Mode Plasma[J]. Chin. Phys. Lett., 2014, 31(03): 045201
Viewed
Full text


Abstract