Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 044204    DOI: 10.1088/0256-307X/31/4/044204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits
CUI Xiao1, ZHANG Can1, LIANG Song1, ZHU Hong-Liang1**, HOU Lian-Ping2
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, UK
Cite this article:   
CUI Xiao, ZHANG Can, LIANG Song et al  2014 Chin. Phys. Lett. 31 044204
Download: PDF(541KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200 s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.
Received: 16 October 2013      Published: 25 March 2014
PACS:  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  78.55.Cr (III-V semiconductors)  
  81.05.Ea (III-V semiconductors)  
  81.15.Cd (Deposition by sputtering)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/044204       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/044204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CUI Xiao
ZHANG Can
LIANG Song
ZHU Hong-Liang
HOU Lian-Ping
[1] Kish F A, Welch D et al 2011 IEEE J. Sel. Top. Quantum Electron. 17 1470
[2] Nagarajan R, Rahn J et al 2011 J. Lightwave Technol. 29 386
[3] Kwon Y H, Choe J S, Sim J S, Kim S B, Yun H, Choi K S, Choi B S and Nam E S 2009 ETRI J. 31 765
[4] Kobayashi W, Arai M, Yamanaka T, Fujiwara N, Fujisawa T, Tadokoro T, Tsuzuki K, Kondo Y and Kano F 2010 J. Lightwave Technol. 28 164
[5] Masanovic M L, Lal V, Skogen E J, Barton J S, Summers J A, Raring J A, Coldren L A and Blumenthal D 2005 IEEE Photon. Technol. Lett. 17 2364
[6] Aimez V, Beauvais J, Beerens J, Morris D and Lim H S 2002 IEEE J. Sel. Top. Quantum Electron. 8 870
[7] McKee A, McLean C J, Lullo G, Bryce A C, Rue R M and Marsh J H 1997 IEEE J. Quantum Electron. 33 45
[8] Ooi B S, Ong T K and Gunawan O 2004 IEEE J. Quantum Electron. 40 481
[9] Liu N and Dubowski J J 2013 Appl. Surf. Sci. 270 16
[10] Marsh J H 1996 Conference Proceedings LEOS'96, the 9th Annual Meeting IEEE Lasers and Electro-Optics Society 2 380
[11] Kaleem M, Zhang X and He J J 2012 Asia Communications and Photonics Conference (Guangzhou 7–10 November 2013) AF4A.12
[12] Zhang J, Lu Y and Wang W 2003 Chin. J. Semicond. 24 785
[13] Kowalski O P, Hamilton C J, McDougall S D, Marsh J H, Bryce A C, De R M, Vogele B and Stanley C R 1998 Appl. Phys. Lett. 72 581
[14] Marsh J H, Hamilton C J, Kowalski O P, McDougall S D, Liu X F and Qiu B C 2004 US Patent 6719884 B2
[15] Skolnick M S, Foulkes E J and Tuck B 1984 J. Appl. Phys. 55 2951
Related articles from Frontiers Journals
[1] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 044204
[2] Yi Ruan, Kan Li, Qiang Lin, Ting Zhang. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method[J]. Chin. Phys. Lett., 2018, 35(4): 044204
[3] Yuan-Hao Gong, Zhi-Yong Li, Jin-Zhong Yu, Yu-De Yu. Silicon-on-Insulator-Based Broadband 1$\times$3 Adiabatic Splitter with Simultaneous Tapering of Velocity and Coupling[J]. Chin. Phys. Lett., 2016, 33(09): 044204
[4] LIANG Hui-Min, WANG Jing-Quan, WANG Xue, WANG Gui-Mei. Surface Plasmon Interference Lithography Assisted by a Fabry–Perot Cavity Composed of Subwavelength Metal Grating and Thin Metal Film[J]. Chin. Phys. Lett., 2015, 32(10): 044204
[5] LIU Wei-Hua, ZHAO Yan-Li, XU Cheng-Zhi, ZHAO Jian-Yi, LIU Wen, XU Yuan-Zhong. Optical 90° Hybrid Based on an InP 4×4 Multimode Interference Coupler for Coherent Receiver Application[J]. Chin. Phys. Lett., 2012, 29(6): 044204
[6] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 044204
[7] CHEN Xi**, FAN Zhong-Chao, ZHANG Jing, SONG Guo-Feng, CHEN Liang-Hui. Pseudo-Rhombus-Shaped Subwavelength Crossed Gratings of GaAs for Broadband Antireflection[J]. Chin. Phys. Lett., 2010, 27(12): 044204
[8] YANG Zhi-Feng, WU Ai-Min, FANG Na, JIANG Xun-Ya, LIN Xu-Lin, WANG Xi, ZOU Shi-Chang. Self-Collimation in Planar Photonic Crystals Fabricated by CMOS Technology[J]. Chin. Phys. Lett., 2010, 27(2): 044204
[9] WANG Chun-Xia, XU Xing-Sheng, XIONG Gui-Guang, HU Hai-Yang, SONG Qian, DU Wei, CHEN Hong-Da. Structure Tuning of Line-Defect Waveguides Based on Silicon-on-Insulator Photonic Crystal Slabs[J]. Chin. Phys. Lett., 2007, 24(3): 044204
[10] ZHANG Liang, LI Jing, LI Cheng-Fang, ZHANG Fei, SHI Li-Na. A Novel Nano-Grating Structure of Polarizing Beam Splitters[J]. Chin. Phys. Lett., 2006, 23(7): 044204
[11] LOU Shu-Qin, FANG Hong, GUO Tie-Ying, JIAN Shui-Sheng. Investigation on the Fabrication of Photonic Crystal Fibre[J]. Chin. Phys. Lett., 2006, 23(4): 044204
[12] XIONG Jun, HUANG Feng, CAO De-Zhong, LI Hong-Guo, SUN Xu-Juan, WANG Kai-Ge. Super-Resolution of Interference Pattern with Independent Laser Beams[J]. Chin. Phys. Lett., 2005, 22(11): 044204
[13] JIN Guo-Liang, SHAO Gong-Wang, Mu Huan, HU Li-Li, LI Qu. Gain and Noise Figure of a Double-Pass Waveguide Amplifier Based on Er/Yb-Doped Phosphate Glass[J]. Chin. Phys. Lett., 2005, 22(11): 044204
[14] ZHANG Xi-Zhen, WANG Fei, ZHANG Hai-Ming, ZHANG Da-Ming, SUN Wei. Fabrication of 32×32 Arrayed Waveguide Grating Using Fluorinated Polymers[J]. Chin. Phys. Lett., 2005, 22(8): 044204
[15] YANG Di, LI Yan-Ping, CHEN Shao-Wu, YU Jin-Zhong. A 4×4 Strictly Nonblocking Silicon-on-Insulator Thermo-Optic Switch Matrix[J]. Chin. Phys. Lett., 2005, 22(6): 044204
Viewed
Full text


Abstract