Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 043201    DOI: 10.1088/0256-307X/31/4/043201
ATOMIC AND MOLECULAR PHYSICS |
The Inversionless Amplification in a Tripod System of 87Rb Atoms in a Magneto-optical Trap
SUN Zhen1, JIA Feng-Dong1, LV Shuang-Fei1, RUAN Ya-Ping1, QING Bo3, XUE Ping2, XU Xiang-Yuan2,4, DAI Xing-Can2, ZHONG Zhi-Ping1**
1School of Physics, University of Chinese Academy of Sciences, Beijing 100049
2State Key Laboratory of Low-dimensional Quantum Physics, Department of Physics, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084
3Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900
4Department of Physics, Capital Normal University, Beijing 100037
Cite this article:   
SUN Zhen, JIA Feng-Dong, LV Shuang-Fei et al  2014 Chin. Phys. Lett. 31 043201
Download: PDF(806KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The probe transmission spectra around the atomic transition 52S1/2,F=2→52P3/2,F'=2 of 87Rb are measured in a magneto-optical trap by adding a coupling field around the atomic transition 52S1/2,F=2→52P3/2,F'=2. The inversionless amplification is observed in the spectrum over the atomic transition 52S1/2,F=2→52P3/2,F'=2. The tripod electromagnetically induced transparency is proposed to account for the amplification feature, in which population distributions among these related atomic levels play an important role.
Received: 23 December 2013      Published: 25 March 2014
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/043201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/043201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Zhen
JIA Feng-Dong
LV Shuang-Fei
RUAN Ya-Ping
QING Bo
XUE Ping
XU Xiang-Yuan
DAI Xing-Can
ZHONG Zhi-Ping
[1] Arimondo E 1996 Prog. Opt. 35 257
[2] Harris S E 1997 Phys. Today 50 36
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[4] Fleischhauer M, Imamoglu M A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[5] Li H, Sautenkov V A, Rostovtsev Y V, Welch G, Hemmer P R and Scully M O 2009 Phys. Rev. A 80 023820
[6] Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 75 1499
[7] Joo J, Bourassa J, Blais A and Sanders B C 2010 Phys. Rev. Lett. 105 073601
[8] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[9] Huang W, Ruan Y P, Jia F D, Zhong Y P, Liu L W, Dai X C, Xue P, Xu X Y and Zhong Z P 2012 Chin. Phys. Lett. 29 013201
[10] Lukin M D, Yelin S F, Fleischhauer M and Scully M O 1999 Phys. Rev. A 60 3225
[11] Rebic S, Vitali D, Ottaviani C, Tombesi P, Artoni M, Cataliotti F and Corbal R 2004 Phys. Rev. A 70 023822
[12] Petrosyan D and Malakyan Y P 2004 Phys. Rev. A 70 023822
[13] Paspalakis E and Knight P L 2002 Phys. Rev. A 66 015802
[14] Goren C, Wilson-Gordon A D, Rosenbluh M and Friedmann H 2004 Phys. Rev. A 69 063802
[15] Raczynski A, Rzepecka M, Zaremba J and Zielinska-Kaniasty S 2006 Opt. Commun. 260 73
[16] Hemmer P 2000 Phys. Rev. Lett. 84 4080
[17] Li S J, Yang X D, Cao X M and Wang H 2007 J. Phys. B 40 3211
[18] Wang H, Li S J, Xu Z X et al 2011 Phys. Rev. A 83 043815
[19] Shore B W 1990 Theory of Coherent Atomic Excitation (New York: Wiley)
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 043201
[2] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 043201
[3] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 043201
[4] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 043201
[5] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 043201
[6] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 043201
[7] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 043201
[8] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 043201
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 043201
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 043201
[11] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 043201
[12] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 043201
[13] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 043201
[14] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 043201
[15] Bin Duan, Muhammad Abbas Bari, Ze-Qing Wu, Jun Yan, Jian-Guo Wang. Stark-Broadened Profiles of the Spectral Line $P_ \alpha$ in He II Ions[J]. Chin. Phys. Lett., 2016, 33(03): 043201
Viewed
Full text


Abstract