Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 041101    DOI: 10.1088/0256-307X/31/4/041101
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Finite Size Effect on the in-Medium Chiral Condensate at Finite Density
XIA Cheng-Jun1, PENG Guang-Xiong1,2**, HOU Jia-Xun2
1School of Physics, University of Chinese Academy of Sciences, Beijing 100049
2Theoretical Physics Center for Science Facilities, Institute of High Energy Physics, Beijing 100049
Cite this article:   
XIA Cheng-Jun, PENG Guang-Xiong, HOU Jia-Xun 2014 Chin. Phys. Lett. 31 041101
Download: PDF(674KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The in-medium quark condensate is studied with an equivalent quark mass approach that has the advantage of no need for extra assumptions on the current mass derivatives of model parameters with respect to the quark current mass. It is found that the ratio of the quark condensate in a medium to that in a vacuum depends not only on density but also on the finite size. With decreasing volume, it decreases to a minimum, and then saturates at a radius of about 1 fm. The condensate approaches to its bulk value when the volume becomes infinitely large, and it decreases linearly with increasing density if the density is extremely low.
Received: 04 July 2013      Published: 25 March 2014
PACS:  11.30.Rd (Chiral symmetries)  
  12.39.-x (Phenomenological quark models)  
  21.65.Qr (Quark matter)  
  24.85.+p (Quarks, gluons, and QCD in nuclear reactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/041101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/041101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Cheng-Jun
PENG Guang-Xiong
HOU Jia-Xun
[1] Brown G and Rho M 2002 Phys. Rep. 363 85
[2] Creutz M 2001 Nucl. Phys. B (Proc. Suppl.) 94 219
[3] Zong H S et al 2006 Int. J. Mod. Phys. A 21 3387
Zong H S et al 2008 Int. J. Mod. Phys. A 23 3591
[4] Liu Y X et al 2006 Int. J. Mod. Phys. A 21 905
Chang L et al 2005 Phys. Rev. D 72 094023
[5] Jiang W Z and Liu B A 2008 Mod. Phys. Lett. A 23 3393
[6] Cohen T D et al 1992 Phys. Rev. C 45 1881
[7] Chodos A et al 1974 Phys. Rev. D 9 3471
[8] Gardim F G and Steffens F M 2009 Nucl. Phys. A 825 222
Cao J et al 2012 Phys. Lett. B 711 65
Luo L J et al 2013 Eur. Phys. J. C 73 2626
Wen X J 2013 Physica 392 4388
[9] Peng G X et al 2002 Phys. Lett. B 548 189
[10] Peng G X et al 2008 Phys. Rev. C 77 065807
[11] Zheng X P et al 2004 Phys. Rev. C 70 015803
Peng G X et al 2010 Int. J. Mod. Phys. E 19 1537
Peng G X et al 1999 Phys. Rev. C 59 3452
Zhang Y and Su R K 2002 Phys. Rev. C 65 035202
[12] Peng G X et al 1999 Phys. Rev. C 61 015201
Peng G X et al 2000 Phys. Rev. C 62 025801
[13] Chakrabarty S 1991 Phys. Rev. D 43 627
Li A et al 2010 Mon. Not. R. Astron. Soc. 402 2715
Li A et al 2011 Res. Astron. Astrophys. 11 482
Chu P C et al 2014 Astrophys. J. 780 135
[14] Wen X J et al 2005 Phys. Rev. C 72 015204
Peng G X et al 2006 Phys. Lett. B 633 314
[15] Zhang Y and Su R K 2003 Phys. Rev. C 67 015202
Wen X J et al 2007 J. Phys. G 34 1697
Wen X J et al 2009 J. Phys. G 36 025011
[16] Chen S W et al 2012 Chin. Phys. C 36 947
Chen S W and Peng G X 2012 Commun. Theor. Phys. 57 1037
[17] Fowler G N et al 1981 Z. Phys. C 9 271
[18] Wu C et al 2012 Europhys. Lett. 98 21001
[19] Lugones G and Horvath J E 2003 Int. J. Mod. Phys. D 12 495
Horvath J E et al 2002 EConf C 174 010815
[20] Peng G X et al 2003 Int. J. Mod. Phys. A 18 3151
[21] Peng G X 2005 Nucl. Phys. A 747 75
[22] Tang H H and Peng G X 2011 Commun. Theor. Phys. 56 1071
[23] Wilk G and Wlodarczyk Z 1996 J. Phys. G 22 L105 105
Miyamura O 1995 Proc. 24th Int. Cosmic Ray Conf. 1 890
Capdeville J N 1995 Proc. 24th Int. Cosmic Ray Conf. 1 910
[24] Gell-Mann M et al 1968 Phys. Rev. 175 2195
[25] Balian R and Bloch C 1970 Ann. Phys. 60 401
[26] Berger M S and Jaffe R L 1987 Phys. Rev. C 35 213
[27] Madsen J 1994 Phys. Rev. D 50 3328
[28] Reinhardt H and Weigel H 2012 Phys. Rev. D 85 074029
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 041101
[2] Lan-Lan Gao and Xu-Guang Huang. Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory[J]. Chin. Phys. Lett., 2022, 39(2): 041101
[3] Jia-Nan Rong, Liang Chen, and Kai Chang. Chiral Anomaly-Enhanced Casimir Interaction between Weyl Semimetals[J]. Chin. Phys. Lett., 2021, 38(8): 041101
[4] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 041101
[5] Si-Xue Qin and C. D. Roberts. Impressions of the Continuum Bound State Problem in QCD[J]. Chin. Phys. Lett., 2020, 37(12): 041101
[6] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 041101
[7] WANG Xiu-Zhen, LI Jian-Feng, YU Xin-Hua, FENG Hong-Tao. Critical Behavior of Dynamical Chiral Symmetry Breaking with Gauge Boson Mass in QED3[J]. Chin. Phys. Lett., 2015, 32(11): 041101
[8] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 041101
[9] DAI Lian-Rong. The Prediction of Possible Nonstrange Dibaryon[J]. Chin. Phys. Lett., 2014, 31(1): 041101
[10] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 041101
[11] DAI Lian-Rong. Nucleon-Nucleon Interaction and the Mixing of Scalar Meson[J]. Chin. Phys. Lett., 2010, 27(1): 041101
[12] MU Cheng-Fu, SUN Gao-Feng, ZHUANG Peng-Fei. Neutrino Oscillation Induced by Chiral Phase Transition[J]. Chin. Phys. Lett., 2009, 26(3): 041101
[13] WANG Shun-Zhi, WANG Qing,. Electroweak Chiral Lagrangian for Neutral Higgs Boson[J]. Chin. Phys. Lett., 2008, 25(6): 041101
[14] LU Ran, WANG Qing. Equivalence of Different Descriptions for η Particle in Simplest Little Higgs Model[J]. Chin. Phys. Lett., 2007, 24(12): 041101
[15] DAI Lian-Rong, ZHANG Zong-Ye, YU You-Wen&sup,. Structure of Di-Ω Dibaryon[J]. Chin. Phys. Lett., 2006, 23(12): 041101
Viewed
Full text


Abstract