Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 040303    DOI: 10.1088/0256-307X/31/4/040303
GENERAL |
Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems
HUANG Jie-Hui1**, HU Li-Yun1, WANG Lei2, ZHU Shi-Yao3
1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022
2College of Physics, Jilin University, Changchun 130021
3Beijing Computational Science Research Center, Beijing 100084
Cite this article:   
HUANG Jie-Hui, HU Li-Yun, WANG Lei et al  2014 Chin. Phys. Lett. 31 040303
Download: PDF(449KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A group of symmetric operators are introduced to carry out the separability criterion for bipartite and multipartite quantum states. All the symmetric operators, represented by a symmetric matrix with only two nonzero elements, and their arbitrary linear combinations are found to be entanglement witnesses. By using these symmetric operators, Wootters' separability criterion for two-qubit states can be generalized to bipartite and multipartite systems in arbitrary dimensions.
Received: 27 November 2013      Published: 25 March 2014
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/040303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/040303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Jie-Hui
HU Li-Yun
WANG Lei
ZHU Shi-Yao
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schr?dinger E and Born M 1935 Math. Proc. Cambridge Philos. Soc. 31 555
[3] Schr?dinger E and Dirac P A M 1936 Math. Proc. Cambridge Philos. Soc. 32 446
[4] Werner R F 1989 Phys. Rev. A 40 4277
[5] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[6] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[7] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[8] Terhal B M and Horodecki P 2000 Phys. Rev. A 61 040301
[9] Sanpera A, Bru? D and Lewenstein M 2001 Phys. Rev. A 63 050301
[10] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[11] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[12] ?yczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[13] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[14] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[15] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[16] Meyer D A and Wallach N R 2001 arXiv:quant-ph/0108104
[17] Eisert J and Briegel H J 2001 Phys. Rev. A 64 022306
[18] Barnum H and Linden N 2001 J. Phys. A 34 6787
[19] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[20] Peres A 1996 Phys. Rev. Lett. 77 1413
[21] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[22] Uhlmann A 2000 Phys. Rev. A 62 032307
[23] Wong A and Christensen N 2001 Phys. Rev. A 63 044301
[24] Mintert F, Ku? M and Buchleitner A 2004 Phys. Rev. Lett. 92 167902
[25] Rungta P, Buzek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[26] Mintert F, Ku? M and Buchleitner A 2005 Phys. Rev. Lett. 95 260502
[27] Akhtarshenas S J 2005 J. Phys. A 38 6777
[28] Chen Z H, Ma Z H, Gühne O and Severini S 2012 Phys. Rev. Lett. 109 200503
[29] Terhal B M 2000 Phys. Lett. A 271 319
[30] Lewenstein M, Kraus B, Cirac J I and Horodecki P 2000 Phys. Rev. A 62 052310
[31] Terhal B M 2001 Linear Algebr. Appl. 323 61
[32] Brand ao F G S L 2005 Phys. Rev. A 72 022310
[33] Tóth G and Gühne O 2005 Phys. Rev. Lett. 94 060501
[34] Horn R A and Johnson C R 1985 Matrix Analysis (New York: Cambridge University Press) p 205
[35] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[36] Yu C S and Song H S 2006 Phys. Rev. A 73 022325
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 040303
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 040303
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 040303
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 040303
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 040303
[6] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 040303
[7] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 040303
[8] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 040303
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 040303
[10] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 040303
[11] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 040303
[12] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 040303
[13] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 040303
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 040303
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 040303
Viewed
Full text


Abstract