Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 040302    DOI: 10.1088/0256-307X/31/4/040302
GENERAL |
Manipulating Single-Photon Transport Properties in an Asymmetrical Waveguide Coupled to a Whispering-Gallery Resonator Containing a Two-Level Atom
ZHOU Tao1**, ZANG Xiao-Fei2, XU Dan-Hua1
1School of Mathematics and Physics, Shanghai University of Electric, Shanghai 200090
2Engineering Research Center of Optical Instrument and System (Ministry of Education), and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093
Cite this article:   
ZHOU Tao, ZANG Xiao-Fei, XU Dan-Hua 2014 Chin. Phys. Lett. 31 040302
Download: PDF(543KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A hybrid system containing an asymmetrical waveguide coupled to a whispering-gallery resonator embedded with a two-level atom is designed to investigate single-photon transport properties. The transmission and reflection amplitudes are obtained via the discrete coordinates approach. Numerical simulation demonstrates that a tri-frequency photon attenuator is realized by controlling the couplings between the asymmetrical waveguide and the whispering-gallery resonator. The phase shift, group delay and dissipation effects of the transmitted single-photon are also discussed.
Received: 16 December 2013      Published: 25 March 2014
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ar  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/040302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/040302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Tao
ZANG Xiao-Fei
XU Dan-Hua
[1] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Maje J, Kumar S, S Girvin S M and Schoelkopf R J 2004 Nature 431 162
[2] Shen J T and S Fan S 2005 Phys. Rev. Lett. 95 213001
[3] Srinivasan K and Painter O 2007 Nature 450 862
[4] Hughes S 2007 Phys. Rev. Lett. 98 083603
[5] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062
[6] Tan L and Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504
[7] Roy D 2011 Phys. Rev. Lett. 106 053601
[8] Liao J Q, Gong Z R, Zhou L, Liu Y X, Sun C P and Nori F 2010 Phys. Rev. A 81 042304
[9] Hafezi M and P Rabl P 2012 Opt. Express 20 7672
[10] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[11] Ki N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110
[12] Chen W, Chen G Y and Chen Y N 2011 Opt. Lett. 36 3602
[13] Chen G Y, Lambert N, Chou C H, Chen Y N and Nori F 2011 Phys. Rev. B 84 045310
[14] Huang J F, Shi T, Sun C P and Nori F 2013 Phys. Rev. A 88 013836
[15] Cheng M T and Song Y Y 2012 Opt. Lett. 37 978
[16] Zhou T, Zang X F, Liu Y S, Chen J and Zhu Y Y 2013 J. Opt. Soc. Am. B 30 978
[17] Shen J T and Fan S H 2005 Opt. Lett. 30 2001
[18] Wang H Y, Wang Y Q, Hu Q F and Li X J 2012 Sens. Actuators B 166-167 451
[19] Shen J T and Fan S H 2009 Phys. Rev. A 79 023837
[20] Shen J T and S Fan S H 2009 Phys. Rev. A 79 023838
[21] Wu Y, Yang X and Leung P T 1999 Opt. Lett. 24 345
[22] Wu Y and Leung P T 1999 Phys. Rev. A 60 630
[23] Wu Y 2000 Phys. Rev. A 61 033803
[24] Yan C H, Wei L F, Jia W Z and Shen J T 2011 Phys. Rev. A 84 045801
[25] Zang X F, Zhou T, Cai B and Zhu Y M 2013 J. Phys. B 46 145504
[26] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
[27] Zang X F and Jiang C 2010 J. Phys. B 43 215501
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 040302
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 040302
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 040302
[5] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 040302
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 040302
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 040302
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 040302
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 040302
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 040302
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 040302
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 040302
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 040302
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 040302
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 040302
Viewed
Full text


Abstract