GENERAL |
|
|
|
|
Manipulating Single-Photon Transport Properties in an Asymmetrical Waveguide Coupled to a Whispering-Gallery Resonator Containing a Two-Level Atom |
ZHOU Tao1**, ZANG Xiao-Fei2, XU Dan-Hua1 |
1School of Mathematics and Physics, Shanghai University of Electric, Shanghai 200090 2Engineering Research Center of Optical Instrument and System (Ministry of Education), and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093
|
|
Cite this article: |
ZHOU Tao, ZANG Xiao-Fei, XU Dan-Hua 2014 Chin. Phys. Lett. 31 040302 |
|
|
Abstract A hybrid system containing an asymmetrical waveguide coupled to a whispering-gallery resonator embedded with a two-level atom is designed to investigate single-photon transport properties. The transmission and reflection amplitudes are obtained via the discrete coordinates approach. Numerical simulation demonstrates that a tri-frequency photon attenuator is realized by controlling the couplings between the asymmetrical waveguide and the whispering-gallery resonator. The phase shift, group delay and dissipation effects of the transmitted single-photon are also discussed.
|
|
Received: 16 December 2013
Published: 25 March 2014
|
|
PACS: |
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ar
|
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
|
|
|
[1] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Maje J, Kumar S, S Girvin S M and Schoelkopf R J 2004 Nature 431 162 [2] Shen J T and S Fan S 2005 Phys. Rev. Lett. 95 213001 [3] Srinivasan K and Painter O 2007 Nature 450 862 [4] Hughes S 2007 Phys. Rev. Lett. 98 083603 [5] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J and Kimble H J 2008 Science 319 1062 [6] Tan L and Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504 [7] Roy D 2011 Phys. Rev. Lett. 106 053601 [8] Liao J Q, Gong Z R, Zhou L, Liu Y X, Sun C P and Nori F 2010 Phys. Rev. A 81 042304 [9] Hafezi M and P Rabl P 2012 Opt. Express 20 7672 [10] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604 [11] Ki N C, Li J B, Yang Z J, Hao Z H and Wang Q Q 2010 Appl. Phys. Lett. 97 061110 [12] Chen W, Chen G Y and Chen Y N 2011 Opt. Lett. 36 3602 [13] Chen G Y, Lambert N, Chou C H, Chen Y N and Nori F 2011 Phys. Rev. B 84 045310 [14] Huang J F, Shi T, Sun C P and Nori F 2013 Phys. Rev. A 88 013836 [15] Cheng M T and Song Y Y 2012 Opt. Lett. 37 978 [16] Zhou T, Zang X F, Liu Y S, Chen J and Zhu Y Y 2013 J. Opt. Soc. Am. B 30 978 [17] Shen J T and Fan S H 2005 Opt. Lett. 30 2001 [18] Wang H Y, Wang Y Q, Hu Q F and Li X J 2012 Sens. Actuators B 166-167 451 [19] Shen J T and Fan S H 2009 Phys. Rev. A 79 023837 [20] Shen J T and S Fan S H 2009 Phys. Rev. A 79 023838 [21] Wu Y, Yang X and Leung P T 1999 Opt. Lett. 24 345 [22] Wu Y and Leung P T 1999 Phys. Rev. A 60 630 [23] Wu Y 2000 Phys. Rev. A 61 033803 [24] Yan C H, Wei L F, Jia W Z and Shen J T 2011 Phys. Rev. A 84 045801 [25] Zang X F, Zhou T, Cai B and Zhu Y M 2013 J. Phys. B 46 145504 [26] Wu Y and Yang X X 2005 Phys. Rev. A 71 053806 [27] Zang X F and Jiang C 2010 J. Phys. B 43 215501 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|