Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 040301    DOI: 10.1088/0256-307X/31/4/040301
GENERAL |
Thermal Entanglement in the Spin-S Heisenberg XYZ Model
LI Hu1, LI Da-Chuang1,2,3**, WANG Xian-Ping4**, YANG Ming1, CAO Zhuo-Liang1,2
1School of Physics Material Science, Anhui University, Hefei 230039
2School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601
3Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
4Department of Physics, Fuyang Teachers College, Fuyang 236041
Cite this article:   
LI Hu, LI Da-Chuang, WANG Xian-Ping et al  2014 Chin. Phys. Lett. 31 040301
Download: PDF(620KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thermal entanglement in the spin-S Heisenberg XYZ model is studied in detail by using the entanglement measure of negativity. The effects of spin on the thermal entanglement, the threshold temperature, the critical uniform external magnetic field, the nonuniform external magnetic field and the entanglement extremum are discussed, respectively. It is shown that with increasing spin, the entanglement will increase, and then decrease slowly. In addition, we find that entanglement will approach a constant Nc with the increase of DM interaction, the constant increases with the increase of spin, and both the threshold temperature Tc and critical uniform external magnetic field Bc will increase with the increasing spin. Thus high-spin system can inhibit the influence of the external environment better.
Received: 17 December 2013      Published: 25 March 2014
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/040301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hu
LI Da-Chuang
WANG Xian-Ping
YANG Ming
CAO Zhuo-Liang
[1] Schr?dinger E 1935 Proc. Camb. Phil. Soc. 31 555
[2] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[3] Bell J S 1964 Physics 1 195
[4] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Ekert A K 1991 Phys. Rev. Lett. 67 661
[7] Murao M et al 1999 Phys. Rev. A 59 156
[8] Grover L K 1998 Phys. Rev. Lett. 80 4329
[9] Grover L K 1997 Phys. Rev. Lett. 79 325
[10] Chiara G D et al 2004 Phys. Rev. A 70 062308
[11] Yeo Y 2003 Phys. Rev. A 68 022316
[12] Trauzettel B et al 2007 Nat. Phys. 3 192
[13] Kane B E 1998 Nature 393 133
[14] S?rensen A and M?lmer K 1999 Phys. Rev. Lett. 83 2274
[15] Nishiyama M et al 2007 Phys. Rev. Lett. 98 047002
[16] Morra R M et al 1988 Phys. Rev. B 38 543
[17] Wang X, Qin S and Yu L 1999 Phys. Rev. B 60 14529
[18] Zhou L, Song H S et al 2003 Phys. Rev. A 68 024301
[19] Li D C and Cao Z L 2008 Eur. Phys. J. D 50 207
[20] Li D C and Cao Z L 2009 Opt. Commun. 282 1226
[21] L?uchli A M and Schliemann J 2012 Phys. Rev. B 85 054403
[22] Albayrak E 2010 Chin. Phys. B 19 090319
[23] Song W 2009 Chin. Phys. B 18 3251
[24] Guo K T et al 2010 J. Phys. A 43 505301
[25] Peres A 1996 Phys. Rev. Lett. 77 1413
[26] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[27] Leuenberger M N and Loss D 2001 Nature 410 789
Hill S et al 2003 Science 302 1015
Zheludev A et al 2007 Phys. Rev. B 75 104427
[28] Su X Q and Wang A M 2007 Phys. Lett. A 369 196
[29] Wang X G and Wang Z D 2006 Phys. Rev. A 73 064302
[30] Li D C et al 2008 J. Phys.: Condens. Matter 20 325229
[31] Yariv Amnon 1989 Quantum Electronics (Chichester: John Wiley and Sons)
[32] Kheirandish F et al 2008 Phys. Rev. A 77 042309
[33] Bechmann-Pasquinucci H and Tittel W 2000 Phys. Rev. A 61 062308
Cerf N J et al 2002 Phys. Rev. Lett. 88 127902
[34] Kaszlikowaki D et al 2000 Phys. Rev. Lett. 85 4418
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 040301
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 040301
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 040301
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 040301
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 040301
[6] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 040301
[7] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 040301
[8] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 040301
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 040301
[10] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 040301
[11] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 040301
[12] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 040301
[13] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 040301
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 040301
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 040301
Viewed
Full text


Abstract