Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 040201    DOI: 10.1088/0256-307X/31/4/040201
GENERAL |
Numerical Simulation of Rogue Waves by the Local Discontinuous Galerkin Method
CAI Wen-Jun, WANG Yu-Shun**, SONG Yong-Zhong
Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematics and Sciences, Nanjing Normal University, Nanjing 210023
Cite this article:   
CAI Wen-Jun, WANG Yu-Shun, SONG Yong-Zhong 2014 Chin. Phys. Lett. 31 040201
Download: PDF(2139KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study rogue waves described by nonlinear Schr?dinger equations. Such wave solutions are so different from conventional soliton solutions that classic methods such as the Crank–Nicolson scheme cannot work for these cases. Fortunately, we find that the local discontinuous Galerkin method equipped with Dirichlet boundary conditions can simulate rogue waves very well. Several numerical examples are presented to show such interesting wave solutions.
Received: 14 November 2013      Published: 25 March 2014
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.70.Dh (Finite-element and Galerkin methods)  
  47.11.Fg (Finite element methods)  
  47.35.Fg (Solitary waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/040201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/040201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Wen-Jun
WANG Yu-Shun
SONG Yong-Zhong
[1] Akhmediev M, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[2] Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[3] Peregrine D H 1983 J. Aust. Math. Soc. B 25 16
[4] Bludov V, Konotop V V and Akhmediev N 2010 Eur. Phys. J. Spec. Top. 185 169
[5] Kaup D J, Malomed B A and Tasgal R S 1993 Phys. Rev. E 48 3049
[6] Ivancevic V G 2010 Cogn. Comput. 2 17
[7] Yan Z 2011 Phys. Lett. A 375 4274
[8] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[9] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[10] Cockburn B and Shu C W 1998 SIAM J. Numer. Anal. 35 2440
[11] Xu Y and Shu C W 2002 SIAM J. Numer. Anal. 40 769
[12] Xu Y and Shu C W 2008 SIAM J. Numer. Anal. 46 1998
[13] Xu Y and Shu C W 2011 Commun. Comput. Phys. 10 474
[14] Xu Y and Shu C W 2005 J. Comput. Phys. 205 72
[15] Shu C W and Osher S 1988 J. Comput. Phys. 77 439
Related articles from Frontiers Journals
[1] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift *[J]. Chin. Phys. Lett., 0, (): 040201
[2] Bin Cheng, Ya-Ming Chen, Xiao-Gang Deng. Solution to the Fokker–Planck Equation with Piecewise-Constant Drift[J]. Chin. Phys. Lett., 2020, 37(6): 040201
[3] Chuan-Jie Hu, Ya-Li Zeng, Yi-Neng Liu, Huan-Yang Chen. Three-Dimensional Broadband Acoustic Waveguide Cloak[J]. Chin. Phys. Lett., 2020, 37(5): 040201
[4] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 040201
[5] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 040201
[6] Xiang Li, Xu Qian, Bo-Ya Zhang, Song-He Song. A Multi-Symplectic Compact Method for the Two-Component Camassa–Holm Equation with Singular Solutions[J]. Chin. Phys. Lett., 2017, 34(9): 040201
[7] Xiang Li, Xu Qian, Ling-Yan Tang, Song-He Song. A High-Order Conservative Numerical Method for Gross–Pitaevskii Equation with Time-Varying Coefficients in Modeling BEC[J]. Chin. Phys. Lett., 2017, 34(6): 040201
[8] Jian Liu, Bao-He Li, Xiao-Song Chen. Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk[J]. Chin. Phys. Lett., 2017, 34(5): 040201
[9] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 040201
[10] Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang. Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS[J]. Chin. Phys. Lett., 2016, 33(10): 040201
[11] Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli. Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source[J]. Chin. Phys. Lett., 2016, 33(05): 040201
[12] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 040201
[13] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 040201
[14] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 040201
[15] M. N. Stankov, M. D. Petković, V. Lj. Marković, S. N. Stamenković, A. P. Jovanović. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon[J]. Chin. Phys. Lett., 2015, 32(02): 040201
Viewed
Full text


Abstract