Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 038501    DOI: 10.1088/0256-307X/31/3/038501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Simulation and Experimentation for Low Density Drain AlGaN/GaN HEMT
WANG Chong**, HE Yun-Long, DING Ning, ZHENG Xue-Feng, ZHANG Peng, MA Xiao-Hua, ZHANG Jin-Cheng, HAO Yue
Key Lab of Wide Band Gap Semiconductor Materials and Devices, and Institute of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
WANG Chong, HE Yun-Long, DING Ning et al  2014 Chin. Phys. Lett. 31 038501
Download: PDF(1118KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to improve the breakdown voltage of AlGaN/GaN high electron mobility transistors (HEMTs), we report a feasible method of low density drain (LDD) HEMT. The fluoride-based plasma treatment using CF4 gas is performed on the drain-side of the gate edge. The channel two-dimensional electron gas (2DEG) concentrations are modulated by fluoride plasma treatment, and the peak electric field at the gate edge is effectively reduced, so the breakdown voltage is improved. The electric field distributions of the LDD-HEMTs are simulated using the Silvaco software, and the peak of the electric field on the gate edge is effectively reduced. Experimental results show that, compared with the conventional HEMT, LDD-HEMTs have a lower reverse leakage current of the gate, and the breakdown voltage is increased by 36%. The current collapse characteristics of the LDD-HEMTs are confirmed by dual-pulse measurement, and an obvious pulse current reduction is due to the surface states by implanting F ions between the gate and the drain.
Received: 26 November 2013      Published: 28 February 2014
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/038501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/038501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Chong
HE Yun-Long
DING Ning
ZHENG Xue-Feng
ZHANG Peng
MA Xiao-Hua
ZHANG Jin-Cheng
HAO Yue
[1] Tian B L, Chen C, Zhang J H, Zhang W L and Liu X Z 2013 Chin. Phys. Lett. 30 026101
[2] Zhang S, Li M C, Feng Z H, Liu B, Yin J Y and Zhao L C 2009 Appl. Phys. Lett. 95 212101
[3] Wang X D, Hu W D, Chen X S and Lu W 2012 IEEE Trans. Electron Devices 59 1393
[4] Guo N, Hu W D, Chen X S, Wang L and Lu W 2013 Opt. Express 21 1606
[5] Rajabi S, Orouji A A, MoghadamH A and Mahabadi S E J 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN 2011) (July 21–22 2011 Thuckafay, India) p 269
[6] Dong Z H, Wang J Y, Wen C P, Gong D N, Li Y, Yu M, Hao Y L, Xu F J, Sheng B and Wang Y Y 2010 Solid-State Electron. 54 1339
[7] Mao W, Yang C, Hao Y, Ma X H, Wang C, Zhang J C, Liu H X, Bi Z W, Xu S R, Yang L A, Yang L, Zhang K, Zhang N Q and Pei Y 2011 Chin. Phys. B 20 097203
[8] Wang M J and Chen K J 2011 IEEE Trans. Electron Devices 58 460
[9] Duan B X, Yang Y T and Chen K J 2012 Acta Phys. Sin. 33 767 (in Chinese)
[10] Kim Y S, Lim J Y, Kim M K and Han M K 2011 Phys. Status Solidi C 8 453
[11] Song D, Liu J, Cheng Z Q, Tang W C W, Lau K M and Chen K J 2007 IEEE Electron Device Lett.r 28 189
[12] Karmalkar S, Shur M S, Simin G and Khan M A 2005 IEEE Trans. Electron Devices 52 2534
[13] Cai Y, Zhou Y G, Lau K M and Chen K J 2006 IEEE Trans. Electron Devices 53 2207
[14] Cho K H, Choi Y H, Lim J, Kim Y S, Ji I H and Han M K 2008 IEEE Power Electron. Spec. Conf. (June 15–19 2008 Rhodes, Greece) p 2172
[15] Cho K H, Choi Y H, Lim J and Han M K 2008 Phys. Scr. 78 065802
[16] Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2002 Phys. Status Solidi A 194 447
[17] Chu R M, Zhou Y G, Liu J, Wang D L, Chen K J and Lau K M 2005 IEEE Trans. Electron Devices 52 438
[18] Lorenz A, Derluyn J, Das J, Cheng K, Degroote S, Medjdoub F, Germain M and Borghs G 2009 Phys. Status Solidi C 6 S996
Related articles from Frontiers Journals
[1] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 038501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 038501
[3] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 038501
[4] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 038501
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 038501
[6] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 038501
[7] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 038501
[8] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 038501
[9] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 038501
[10] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 038501
[11] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 038501
[12] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 038501
[13] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 038501
[14] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 038501
[15] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 038501
Viewed
Full text


Abstract