Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 030503    DOI: 10.1088/0256-307X/31/3/030503
GENERAL |
Floquet Topological Insulator in the BHZ Model with the Polarized Optical Field
ZHU Hua-Xin1**, WANG Tong-Tong2, GAO Jin-Song2, LI Shuai1, SUN Ya-Jun1, LIU Gui-Lin1
1School of Science, Jiangnan University, Wuxi 214122
2Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033
Cite this article:   
ZHU Hua-Xin, WANG Tong-Tong, GAO Jin-Song et al  2014 Chin. Phys. Lett. 31 030503
Download: PDF(643KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological phase of newly found matter has aroused wide interests, especially related with the external periodical modulating. With the help of the Floquet theory, we investigate the possibility of externally manipulating the topological property in a HgTe/CdTe quantum well system with the polarized optical field. We give the phase diagram, showing that by modulating the parameters of the polarized optical field, especially the phase, the topological phase transition can be realized in the QW and lead to the so-called Floquet topological insulator. When the optical field is weak, the driven QSH state of QW is robust with the optical field. However, when the optical field is relatively larger, the group velocity of edge states and the gap between the bulk states exhibit certain oscillations. The implications of our results are discussed.
Received: 18 November 2013      Published: 28 February 2014
PACS:  05.30.Fk (Fermion systems and electron gas)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  73.43.Nq (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/030503       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/030503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Hua-Xin
WANG Tong-Tong
GAO Jin-Song
LI Shuai
SUN Ya-Jun
LIU Gui-Lin
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114
[4] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108
[5] Jiang L, Kitagawa T, Alicea J, Akhmerov A R, Pekker D, Refael G, Cirac J I, Demler E, Lukin M D and Zoller P 2011 Phys. Rev. Lett. 106 220402
[6] Inoue J and Tanaka A 2010 Phys. Rev. Lett. 105 017401
[7] Zhang X M, Liu G D, Du Y, Liu E K, Wang W H, Wu G H and Liu Z Y 2012 Acta Phys. Sin. 61 123101 (in Chinese)
[8] Zeng L W and Song R X 2012 Acta Phys. Sin. 61 117302 (in Chinese)
[9] Dora B, Cayssol J, Simon F and Moessner R 2012 Phys. Rev. Lett. 108 056602
[10] Wang Y X, Li F X and Wu Y M 2012 Europhys. Lett. 99 47007
[11] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[12] Shirley J H 1965 Phys. Rev. 138 B979
[13] Sambe H 1973 Phys. Rev. A 7 2203
[14] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[15] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[16] Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[17] Buhmann H, Molenkamp L W, Hughes T, Liu C X, Qi X L and Zhang S C 2008 J. Phys. Soc. Jpn. 77 031007
[18] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[19] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[20] Ezawa M 2012 New J. Phys. 14 033003
[21] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[22] Prodan E 2009 Phys. Rev. B 80 125327
[23] Thouless D J, Kohmoto M and Nightingale M P 1982 Phys. Rev. Lett. 49 405
[24] Zhang W, Zhang P, Duan S Q and Zhao X G 2009 New J. Phys. 11 063032
[25] Lee D H, Zhang G M and Xiang T 2007 Phys. Rev. Lett. 99 196805
[26] Xiao D, Chang M C and Niu Q 2007 Rev. Mod. Phys. 82 1959
[27] Zhou B, Lu H Z, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807
Related articles from Frontiers Journals
[1] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 030503
[2] Ya-Dong Song, Xiao-Ming Cai. Properties of One-Dimensional Highly Polarized Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(11): 030503
[3] Yi-Cong Yu, Xi-Wen Guan. A Unified Approach to the Thermodynamics and Quantum Scaling Functions of One-Dimensional Strongly Attractive $SU(w)$ Fermi Gases[J]. Chin. Phys. Lett., 2017, 34(7): 030503
[4] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 030503
[5] Xiao-Xia Ruan, Hao Gong, Yuan-Mei Shi , Hong-Shi Zong. Specific Heat of a Unitary Fermi Gas Including Particle-Hole Fluctuation[J]. Chin. Phys. Lett., 2016, 33(11): 030503
[6] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 030503
[7] CHEN Ke-Ji, ZHANG Wei. Nematic Ferromagnetism on the Lieb Lattice[J]. Chin. Phys. Lett., 2014, 31(11): 030503
[8] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams[J]. Chin. Phys. Lett., 2014, 31(09): 030503
[9] CAI Li-Qiang, WANG Li-Fang, WU Ke, YANG Jie. The Fermion Representation of Quantum Toroidal Algebra on 3D Young Diagrams[J]. Chin. Phys. Lett., 2014, 31(07): 030503
[10] LUAN Tian, JIA Tao, CHEN Xu-Zong, MA Zhao-Yuan. Optimized Degenerate Bose–Fermi Mixture in Microgravity: DSMC Simulation of Sympathetic Cooling[J]. Chin. Phys. Lett., 2014, 31(04): 030503
[11] CHEN Yan, ZHANG Ke-Zhi, WANG Xiao-Liang, CHEN Yong. Ground-State Properties of Superfluid Fermi Gas in Fourier-Synthesized Optical Lattices[J]. Chin. Phys. Lett., 2014, 31(03): 030503
[12] RUAN Xiao-Xia, GONG Hao, DU Long, JIANG Yu, SUN Wei-Min, ZONG Hong-Shi. Radio-Frequency Spectra of Ultracold Fermi Gases Including a Generalized GMB Approximation at Unitarity[J]. Chin. Phys. Lett., 2013, 30(11): 030503
[13] WANG Ya-Hui, and MA Zhong-Qi. Ground State Energy of 1D Attractive δ-Function Interacting Fermi Gas[J]. Chin. Phys. Lett., 2012, 29(8): 030503
[14] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 030503
[15] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 030503
Viewed
Full text


Abstract