GENERAL |
|
|
|
|
Floquet Topological Insulator in the BHZ Model with the Polarized Optical Field |
ZHU Hua-Xin1**, WANG Tong-Tong2, GAO Jin-Song2, LI Shuai1, SUN Ya-Jun1, LIU Gui-Lin1 |
1School of Science, Jiangnan University, Wuxi 214122 2Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033
|
|
Cite this article: |
ZHU Hua-Xin, WANG Tong-Tong, GAO Jin-Song et al 2014 Chin. Phys. Lett. 31 030503 |
|
|
Abstract Topological phase of newly found matter has aroused wide interests, especially related with the external periodical modulating. With the help of the Floquet theory, we investigate the possibility of externally manipulating the topological property in a HgTe/CdTe quantum well system with the polarized optical field. We give the phase diagram, showing that by modulating the parameters of the polarized optical field, especially the phase, the topological phase transition can be realized in the QW and lead to the so-called Floquet topological insulator. When the optical field is weak, the driven QSH state of QW is robust with the optical field. However, when the optical field is relatively larger, the group velocity of edge states and the gap between the bulk states exhibit certain oscillations. The implications of our results are discussed.
|
|
Received: 18 November 2013
Published: 28 February 2014
|
|
PACS: |
05.30.Fk
|
(Fermion systems and electron gas)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
|
|
|
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [3] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114 [4] Kitagawa T, Oka T, Brataas A, Fu L and Demler E 2011 Phys. Rev. B 84 235108 [5] Jiang L, Kitagawa T, Alicea J, Akhmerov A R, Pekker D, Refael G, Cirac J I, Demler E, Lukin M D and Zoller P 2011 Phys. Rev. Lett. 106 220402 [6] Inoue J and Tanaka A 2010 Phys. Rev. Lett. 105 017401 [7] Zhang X M, Liu G D, Du Y, Liu E K, Wang W H, Wu G H and Liu Z Y 2012 Acta Phys. Sin. 61 123101 (in Chinese) [8] Zeng L W and Song R X 2012 Acta Phys. Sin. 61 117302 (in Chinese) [9] Dora B, Cayssol J, Simon F and Moessner R 2012 Phys. Rev. Lett. 108 056602 [10] Wang Y X, Li F X and Wu Y M 2012 Europhys. Lett. 99 47007 [11] Ezawa M 2013 Phys. Rev. Lett. 110 026603 [12] Shirley J H 1965 Phys. Rev. 138 B979 [13] Sambe H 1973 Phys. Rev. A 7 2203 [14] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196 [15] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [16] Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [17] Buhmann H, Molenkamp L W, Hughes T, Liu C X, Qi X L and Zhang S C 2008 J. Phys. Soc. Jpn. 77 031007 [18] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [19] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802 [20] Ezawa M 2012 New J. Phys. 14 033003 [21] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808 [22] Prodan E 2009 Phys. Rev. B 80 125327 [23] Thouless D J, Kohmoto M and Nightingale M P 1982 Phys. Rev. Lett. 49 405 [24] Zhang W, Zhang P, Duan S Q and Zhao X G 2009 New J. Phys. 11 063032 [25] Lee D H, Zhang G M and Xiang T 2007 Phys. Rev. Lett. 99 196805 [26] Xiao D, Chang M C and Niu Q 2007 Rev. Mod. Phys. 82 1959 [27] Zhou B, Lu H Z, Shen S Q and Niu Q 2008 Phys. Rev. Lett. 101 246807 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|