Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 030501    DOI: 10.1088/0256-307X/31/3/030501
GENERAL |
Linear and Nonlinear Anderson Localization in a Curved Potential
Claudio Conti**
Department of Physics, University Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy
Cite this article:   
Claudio Conti 2014 Chin. Phys. Lett. 31 030501
Download: PDF(559KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Disorder induced localization in the presence of nonlinearity and curvature is investigated. The time-resolved three-dimensional expansion of a wave packet in a bent cigar shaped potential with a focusing Kerr-like interaction term and Gaussian disorder is numerically analyzed. A self-consistent analytical theory, in which randomness, nonlinearity and geometry are determined by a single scaling parameter, is reported, and it is shown that curvature enhances localization.
Received: 04 November 2013      Published: 28 February 2014
PACS:  05.45.Yv (Solitons)  
  42.65.T  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/030501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Claudio Conti
[1] Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clement D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891
[2] Conti C and Leuzzi L 2011 Phys. Rev. B 83 134204
[3] Kivshar Y S, Gredeskul S A, Sánchez A and Vázquez L 1990 Phys. Rev. Lett. 64 1693
[4] Paul T, Schlagheck P, Leboeuf P and Pavloff N 2007 Phys. Rev. Lett. 98 210602
[5] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[6] Sanchez-Palencia L, Clément D, Lugan P, Bouyer P, Shlyapnikov G V and Aspect A 2007 Phys. Rev. Lett. 98 210401
[7] Skipetrov S E, Minguzzi A, van Tiggelen B A and Shapiro B 2008 Phys. Rev. Lett. 100 165301
[8] Conti C 2012 Phys. Rev. A 86 061801
[9] Folli V and Conti C 2012 Opt. Lett. 37 332
[10] da Costa R C T 1981 Phys. Rev. A 23 1982
[11] Conti C 2013 arXiv:1302.3806
[12] Carretero-Gonzalez R, Frantzeskakis D J and Kevrekidis P G 2008 Nonlinearity 21 R139
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 030501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 030501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 030501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 030501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 030501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 030501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 030501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 030501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 030501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 030501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 030501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 030501
Viewed
Full text


Abstract