Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 020504    DOI: 10.1088/0256-307X/31/2/020504
GENERAL |
Berezinskii–Kosterlitz–Thouless Transition in a Two-Dimensional Random-Bond XY Model on a Square Lattice
DENG Yi-Bo, GU Qiang**
Department of Physics, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
DENG Yi-Bo, GU Qiang 2014 Chin. Phys. Lett. 31 020504
Download: PDF(614KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform Monte Carlo simulations to study the two dimensional random-bond XY model on a square lattice. Two kinds of bond randomness with the coupling coefficient obeying the Gaussian or uniform distribution are discussed. It is shown that the two kinds of disorders lead to similar thermodynamic behaviors if their variances take the same value. This result implies that the variance can be chosen as a characteristic parameter to evaluate the strength of the randomness. In addition, the Berezinskii–Kosterlitz–Thouless transition temperature decreases as the variance increases and the transition can even be destroyed as long as the disorder is strong enough.
Received: 06 October 2013      Published: 28 February 2014
PACS:  05.70.Fh (Phase transitions: general studies)  
  75.40.Mg (Numerical simulation studies)  
  75.50.Lk (Spin glasses and other random magnets)  
  05.70.Jk (Critical point phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/020504       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/020504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Yi-Bo
GU Qiang
[1] Berezinskii V L 1971 Sov. Phys. JETP 32 493
[2] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[3] Kosterlitz J M 1974 J. Phys. C 7 1046
[4] Bramwell S T and Holdsworth P C W 1993 J. Phys.: Condens. Matter 5 L53
Bramwell S T and Holdsworth P C W 1994 Phys. Rev. B 49 8811
[5] Nelson D R and Kosterlitz J M 1977 Phys. Rev. Lett. 39 1201
[6] Bishop D J and Reppy J D 1978 Phys. Rev. Lett. 40 1727
[7] Resnick D J, Garland J C, Boyd J T, Shoemaker S and Newrock R S 1981 Phys. Rev. Lett. 47 1542
[8] Trombettoni A, Smerzi A and Sodano P 2005 New J. Phys. 7 57
[9] Rubinstein M, Shraiman S and Nelson D R 1983 Phys. Rev. B 27 1800
[10] Wu F Y 1982 Rev. Mod. Phys. 54 235
[11] Surungan T and Okabe Y 2005 Phys. Rev. B 71 184438
[12] Zhu H X and Yan S L 2006 Chin. Phys. 15 3026
[13] Korshunov S E 1992 Phys. Rev. B 46 6615
[14] Wu R P H, Lo V C and Huang H 2012 J. Appl. Phys. 112 063924
[15] Newman M E J and Barkema G T 1999 Monte Carlo Methods Stat. Phys. (Oxford: Oxford University Press) chap 1 pp 6–14
[16] Minnhagen P and Kim B J 2003 Phys. Rev. B 67 172509
[17] Xu J and Gu Q 2012 Phys. Rev. A 85 043608
[18] Wysin G M, Pereira A R, Marques I A, Leonel S A and Coura P Z 2005 Phys. Rev. B 72 094418
[19] Gupta R and Baillie C F 1992 Phys. Rev. B 45 2883
[20] Castro L M, Pires A S T and Plascak J A 2002 J. Magn. Magn. Mater. 248 62
Related articles from Frontiers Journals
[1] Xiao-Qi Han, Sheng-Song Xu, Zhen Feng, Rong-Qiang He, and Zhong-Yi Lu. Framework for Contrastive Learning Phases of Matter Based on Visual Representations[J]. Chin. Phys. Lett., 2023, 40(2): 020504
[2] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 020504
[3] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 020504
[4] Hong-Mei Yin, Heng-Wei Zhou, Yi-Neng Huang. A New Model of Ferroelectric Phase Transition with Neglectable Tunneling Effect[J]. Chin. Phys. Lett., 2019, 36(7): 020504
[5] Yasuomi D. Sato. Frequency Switches at Transition Temperature in Voltage-Gated Ion Channel Dynamics of Neural Oscillators[J]. Chin. Phys. Lett., 2018, 35(5): 020504
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 020504
[7] Liang Zhao, Yu-Song Tu, Chun-Lei Wang, Hai-Ping Fang. Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions[J]. Chin. Phys. Lett., 2016, 33(03): 020504
[8] GE Hong-Xia, MENG Xiang-Pei, ZHU Ke-Qiang, CHENG Rong-Jun. The Stability Analysis for an Extended Car Following Model Based on Control Theory[J]. Chin. Phys. Lett., 2014, 31(08): 020504
[9] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 020504
[10] WANG Si-Ying, DUAN Wen-Gang, YIN Xie-Zhen. Transition Mode of Two Parallel Flags in Uniform Flow[J]. Chin. Phys. Lett., 2013, 30(11): 020504
[11] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan, MEI Yu-Xue. Generalized Zero-Temperature Glauber Dynamics in a Two-Dimensional Square Lattice[J]. Chin. Phys. Lett., 2012, 29(12): 020504
[12] HU Mao-Bin, Henry Y.K. Lau, LING Xiang, JIANG Rui. Pheromone Static Routing Strategy for Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 020504
[13] LIU You-Jun, ZHANG Hai-Lin, HE Li. Cooperative Car-Following Model of Traffic Flow and Numerical Simulation[J]. Chin. Phys. Lett., 2012, 29(10): 020504
[14] LI Xiang, DONG Li-Yun. Modeling and Simulation of Pedestrian Counter Flow on a Crosswalk[J]. Chin. Phys. Lett., 2012, 29(9): 020504
[15] YU Wing-Chi, WANG Li-Gang, GU Shi-Jian, and LIN Hai-Qing. Scaling of the Leading Response in Linear Quench Dynamics in the Quantum Ising Model[J]. Chin. Phys. Lett., 2012, 29(8): 020504
Viewed
Full text


Abstract