GENERAL |
|
|
|
|
Non-Gaussian Colored Noise Optimized Spatial Coherence of a Hodgkin–Huxley Neuronal Network |
SUN Xiao-Juan1,2, LU Qi-Shao3** |
1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 2Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua Univeristy, Beijing 100084 3Department of Dynamics and Control, Beihang University, Beijing 100191
|
|
Cite this article: |
SUN Xiao-Juan, LU Qi-Shao 2014 Chin. Phys. Lett. 31 020502 |
|
|
Abstract We numerically study how non-Gaussian colored noise affects the spatial coherence of a Hodgkin–Huxley neuronal network. From the simulation results, we find that there exists some intermediate noise intensities, correlation time of the colored noise, and the deviation from Gaussian colored noise, for which an ordered pattern with a characteristic spatial frequency of the system comes forth in a resonant manner. Namely, under certain conditions, spatial coherence of the studied neuronal network can be optimized by the non-Gaussian colored noise, which indicates the occurrence of spatial coherence resonance.
|
|
Received: 22 July 2013
Published: 28 February 2014
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
89.75.Kd
|
(Patterns)
|
|
|
|
|
[1] Stacey W C and Durand D M 2001 J. Neurophysiol. 86 1104 [2] Higgs M H et al 2006 J. Neurosci. 26 8787 [3] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775 [4] Wu S G et al 2001 Phys. Lett. A 279 347 [5] Gammaitoni L et al 1998 Rev. Mod. Phys. 70 223 [6] Lindner B, García-Ojalvo J, Neiman A and Schimansky-Geier L 2004 Phys. Rep. 392 321 [7] Perc M 2007 Chaos Solitons Fractals 31 64 [8] Sun X J, Perc M, Lu Q S and Kurths J 2008 Chaos 18 023102 [9] Wang Q Y, Perc M, Duan Z S and Chen G R 2008 Phys. Lett. A 372 5681 [10] Gu H G, Jia B, Li Y Y and Chen G R 2013 Physica A 392 1361 [11] Li Y Y, Jia B, Gu H G and An S C 2012 Commun. Theor. Phys. 57 817 [12] Zheng Y H, Wang Q Y and Gan C B 2012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 1250115 [13] Wiesenfeld W, Pierson D, Pantazelou E, Dames C and Moss F 1994 Phys. Rev. Lett. 72 2125 [14] Nozaki D, Mar D J, Grigg P and Collins J J 1999 Phys. Rev. Lett. 82 2402 [15] Xu Y, Feng J, Li J J and Zhang H Q 2013 Chaos 23 013110 [16] Xu Y, Feng J, Li J J and Zhang H Q 1999 Physica A 392 4739 [17] Gong Y B, Hao Y H, Xie Y H, Ma X G and Yang C L 2009 Biophys. Chem. 144 88 [18] Gong Y B, Xie Y H and Hao Y H 2009 Physica A 388 3759 [19] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500 [20] Wio H S and Toral R 2004 Physica D 193 161 [21] Perc M and Marhl M 2006 Phys. Rev. E 73 066205 [22] Wang R B and Zhang Z K 2011 IEEE Trans. Neural Netw. 22 1097 [23] Zhang X D, Wang R B and Zhang Z K 2010 Neurocomputing 73 2665 [24] Liu Y, Wang R B, Zhang Z K and Jiao X F 2010 Cognit. Neurodyn. 4 61 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|