Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 020502    DOI: 10.1088/0256-307X/31/2/020502
GENERAL |
Non-Gaussian Colored Noise Optimized Spatial Coherence of a Hodgkin–Huxley Neuronal Network
SUN Xiao-Juan1,2, LU Qi-Shao3**
1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
2Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua Univeristy, Beijing 100084
3Department of Dynamics and Control, Beihang University, Beijing 100191
Cite this article:   
SUN Xiao-Juan, LU Qi-Shao 2014 Chin. Phys. Lett. 31 020502
Download: PDF(791KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically study how non-Gaussian colored noise affects the spatial coherence of a Hodgkin–Huxley neuronal network. From the simulation results, we find that there exists some intermediate noise intensities, correlation time of the colored noise, and the deviation from Gaussian colored noise, for which an ordered pattern with a characteristic spatial frequency of the system comes forth in a resonant manner. Namely, under certain conditions, spatial coherence of the studied neuronal network can be optimized by the non-Gaussian colored noise, which indicates the occurrence of spatial coherence resonance.
Received: 22 July 2013      Published: 28 February 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  89.75.Kd (Patterns)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/020502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Xiao-Juan
LU Qi-Shao
[1] Stacey W C and Durand D M 2001 J. Neurophysiol. 86 1104
[2] Higgs M H et al 2006 J. Neurosci. 26 8787
[3] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[4] Wu S G et al 2001 Phys. Lett. A 279 347
[5] Gammaitoni L et al 1998 Rev. Mod. Phys. 70 223
[6] Lindner B, García-Ojalvo J, Neiman A and Schimansky-Geier L 2004 Phys. Rep. 392 321
[7] Perc M 2007 Chaos Solitons Fractals 31 64
[8] Sun X J, Perc M, Lu Q S and Kurths J 2008 Chaos 18 023102
[9] Wang Q Y, Perc M, Duan Z S and Chen G R 2008 Phys. Lett. A 372 5681
[10] Gu H G, Jia B, Li Y Y and Chen G R 2013 Physica A 392 1361
[11] Li Y Y, Jia B, Gu H G and An S C 2012 Commun. Theor. Phys. 57 817
[12] Zheng Y H, Wang Q Y and Gan C B 2012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 1250115
[13] Wiesenfeld W, Pierson D, Pantazelou E, Dames C and Moss F 1994 Phys. Rev. Lett. 72 2125
[14] Nozaki D, Mar D J, Grigg P and Collins J J 1999 Phys. Rev. Lett. 82 2402
[15] Xu Y, Feng J, Li J J and Zhang H Q 2013 Chaos 23 013110
[16] Xu Y, Feng J, Li J J and Zhang H Q 1999 Physica A 392 4739
[17] Gong Y B, Hao Y H, Xie Y H, Ma X G and Yang C L 2009 Biophys. Chem. 144 88
[18] Gong Y B, Xie Y H and Hao Y H 2009 Physica A 388 3759
[19] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[20] Wio H S and Toral R 2004 Physica D 193 161
[21] Perc M and Marhl M 2006 Phys. Rev. E 73 066205
[22] Wang R B and Zhang Z K 2011 IEEE Trans. Neural Netw. 22 1097
[23] Zhang X D, Wang R B and Zhang Z K 2010 Neurocomputing 73 2665
[24] Liu Y, Wang R B, Zhang Z K and Jiao X F 2010 Cognit. Neurodyn. 4 61
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 020502
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 020502
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 020502
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 020502
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 020502
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 020502
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 020502
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 020502
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 020502
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 020502
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 020502
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 020502
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 020502
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 020502
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 020502
Viewed
Full text


Abstract