Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 128103    DOI: 10.1088/0256-307X/31/12/128103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Synthesis and Optical Properties of InP Semiconductor Nanocombs
YU Yan-Long1,2, ZHAO Yi-Song1, GAO Fa-Ming1**
1Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004
2Department of Petroleum and Chemical Engineering, Northeast Petroleum University, Qinhuangdao 066004
Cite this article:   
YU Yan-Long, ZHAO Yi-Song, GAO Fa-Ming 2014 Chin. Phys. Lett. 31 128103
Download: PDF(1737KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract InP semiconductor nanocombs are successfully synthesized by the chemical vapor deposition method. The detailed morphology and crystalline structures of the products are characterized by x-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy. The optical properties of InP nanocombs, including Raman and photoluminescence spectra, are studied. The possible growth mechanism of InP nanocombs is briefly discussed.
Published: 12 January 2015
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Bc (Nanocrystalline materials)  
  78.30.Fs (III-V and II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/128103       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/128103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Yan-Long
ZHAO Yi-Song
GAO Fa-Ming
[1] Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66
[2] Liu K, Guo X, Zhou Q Zhang B C, Luo Z J and Ding Z 2014 Chin. Phys. B 23 046806
[3] Qiao Z X, Sun Y, He W Y, Liu W, He Q and Li C J 2009 Chin. Phys. B 18 2012
[4] Guo H M, Wen L, Zhao Z F, Bu S J, Li X H and Wang Y Q 2012 Chin. Phys. B 21 108101
[5] Giessen H, Fluegel B, Mohs G, Peyghambarian N, Sprague J R, Micic O I and Nozik A J 1996 Appl. Phys. Lett. 68 304
[6] Wallentin J, Anttu N, Asoli D, Huffman M, Aberg I, Magnusson M H, Siefer G, Fuss-Kailuweit P, Dimroth F, Witzigmann B, Xu H Q, Samuelson L, Deppert K and Borgstr?m M T 2013 Science 339 1057
[7] LaPierre R R, Chia A C E, Gibson S J, Haapamaki C M, Boulanger J, Yee R, Kuyanov P, Zhang J, Tajik N, Jewell N and Rahman K M A 2013 Phys. Status Solidi 7 815
[8] Yu Y L, Zhao Y S, Gao F M and Hou L 2013 Mater. Lett. 107 178
[9] Wang L, Yang H P, Zhao H, Shi R Y, Bao L and Liu B 2011 Appl. Phys. A 104 61
[10] Tang C C, Bando Y, Liu Z W and Golberg D 2003 Chem. Phys. Lett. 376 676
[11] Bhunia S, Kawamura T, Watanabe Y, Fujikawa S and Tokushima K 2003 Appl. Phys. Lett. 83 3371
[12] Bhunia S, Kawamura T, Fujikawa S, Tokushima K and Watanabe Y 2004 Physica E 21 583
[13] Borgstr?m M T, Norberg E, Wickert P, Nilsson H A, Tr?g?rdh J, Dick K A, Statkute G, Ramvall P, Deppert K and Samuelson L 2008 Nanotechnology 19 445602
[14] Lv X L, Zhang X, Yan X, Liu X L, Cui J G, Li J S, Huang Y Q and Ren X M 2012 Chin. Phys. Lett. 29 126102
[15] Comet D M, Mazzetti V G M and LaPierre R R 2007 Appl. Phys. Lett. 90 013116
[16] Radhakrishnana G, Freundlicha A and Fuhrmannd B 2009 J. Cryst. Growth 311 1855
[17] Shen G Z, Bando Y, Liu B D, Tang C C and Golberg D 2006 J. Phys. Chem. B 110 20129
[18] Newman R 1958 Phys. Rev. 111 1518
[19] Wei S, Lu J, Yu W C and Qian Y T 2004 J. Appl. Phys. 95 3683
[20] Guzelian A A, Katari J E B, Kadavanich A V, Banin U, Hamad K, Juban E and Alivisatos A P 1996 J. Phys. Chem. 100 7212
[21] Romanov S G, Sotomayor T C M, Yates H M, Pemble M E, Butko V and Tretijakov V 1997 J. Appl. Phys. 82 380
[22] Bao K Y, Sun H X, Zhu L L and Cao J 2010 Sens. Actuators B 150 649
[23] Bao K Y, Shi L, Liu S Z, Xiong S L, Hu X B and Qian Y T 2009 J. Alloys Compd. 472 59
[24] Zhao Y S, Yu Y L and Gao F M 2013 J. Cryst. Growth 371 148
[25] Pramanik A, Fan Z, Chavva S R, Sinha S S and Ray P C 2014 Sci. Rep. 4 06090
[26] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B, Veca L M and Xie S Y 2006 J. Am. Chem. Soc. 128 7756
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 128103
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 128103
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 128103
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 128103
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 128103
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 128103
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 128103
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 128103
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 128103
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 128103
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 128103
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 128103
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 128103
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 128103
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 128103
Viewed
Full text


Abstract