CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Current Density-Dependent Thermal Stability of ZnSe Nanowire in M-S-M Nanostructure |
TAN Yu1,2, WANG Yan-Guo2** |
1Science College, Hunan Agricultural University, Changsha 410128 2Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
TAN Yu, WANG Yan-Guo 2014 Chin. Phys. Lett. 31 127901 |
|
|
Abstract To enhance the thermal stability of metal-semiconductor nanowire(NW)-metal (M-S-M) nanostructure under high electrical and thermal stress conditions, current-induced failure of ZnSe NWs in the M-S-M nanostructure is studied by in situ transmission electron microscopy. When the single NW is replaced by a bundle of NWs, the large current density flowing through the single NW protruding out of the bundle of NWs is responsible for the electrical breakdown of NWs. In this case, the failure mechanism of the NW changes from the bias polarity-dependent mode to the current density-dependent mode. Consequently, a decrease of current density at the reversely biased metal-semiconductor (M-S) nanocontacts can significantly improve the thermal stability of ZnSe NWs in the M-S-M nanostructure and can enhance the performance of the semiconductor NW-based nanoelectronics.
|
|
Published: 12 January 2015
|
|
PACS: |
79.70.+q
|
(Field emission, ionization, evaporation, and desorption)
|
|
68.37.Hk
|
(Scanning electron microscopy (SEM) (including EBIC))
|
|
81.07.De
|
(Nanotubes)
|
|
|
|
|
[1] Davami K et al 2012 ChemPhysChem 13 347 [2] Westover T et al 2009 Nano Lett. 9 257 [3] Zhao J et al 2011 Nano Lett. 11 4647 [4] Zhang Q et al 2010 Appl. Phys. Lett. 96 253112 [5] Nie A M et al 2011 Nanotechnology 22 405703 [6] Wang Y G et al 2011 J. Appl. Phys. 109 104311 [7] Wiley B J et al 2006 Nano Lett. 6 2273 [8] Wang C et al 2008 J. Am. Chem. Soc. 130 8902 [9] Hadeed F O and Durkan C 2007 Appl. Phys. Lett. 91 123120 [10] Lugstein A et al 2013 Nanotechnology 24 065701 [11] Liu W, Liou J J, Jiang Y, Singh N, Lo G Q, Chung J and Jeong Y H 2010 IEEE Electron Device Lett. 31 915 [12] Tan Y and Wang Y G 2014 Prog. Nat. Sci.: Mater. Int. 24 109 [13] Yu P Y and Cardona M 2005 Fundamentals of Semiconductors (New York: Springer) pp 203–225 [14] Zeng Y P, Wang Y G, Qu B H and Yu H C 2012 Chin. Phys. Lett. 29 088105 [15] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 047901 [16] Tan Y and Wang Y G 2014 Chin. Phys. Lett. 31 107304 [17] Wang Y G, Zou B S, Wang T H, Wang N, Cai Y, Chan Y F and Zhou S X 2006 Nanotechnology 17 2420 [18] Wang Y G, Xia X M, Zuo B S, Wang T H, Han W and Zhou S X 2010 J. Phys. Chem. C 114 12839 [19] Poncharal P, Wang Z L, Ugarte D and De Heer W A 1999 Science 283 1513 [20] Jin C H, Wang J Y, Chen Q and Peng L M 2006 J. Phys. Chem. B 110 5423 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|