CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Electron Trap Energy Distribution in HfO2 by the Discharge-Based Pulse I–V Technique |
ZHENG Xue-Feng1,2**, FAN Shuang1,2, KANG Di1,2, ZHANG Jian-Kun1,2, CAO Yan-Rong2, MA Xiao-Hua2, HAO Yue1,2 |
1School of Microelectronics, Xidian University, Xi'an 710071 2Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Xidian University, Xi'an 710071
|
|
Cite this article: |
ZHENG Xue-Feng, FAN Shuang, KANG Di et al 2014 Chin. Phys. Lett. 31 127701 |
|
|
Abstract The electron traps in HfO2 are a major concern of the reliability of metal-oxide-semiconductor field effect transistors (MOSFETs) beyond the 30 nm technology generation. In this work, the principle of the discharge-based pulse I–V technique is demonstrated in detail. By using this technique, the thorough energy distribution of electron traps across the 4 nm HfO2 layer is identified, which overcomes the shortcomings of the current techniques. It is observed that there are two peaks in HfO2. The large peak is at around 1.0 eV below the HfO2 conduction band bottom. The small peak is at about 1.43 eV below the HfO2 conduction band bottom. The results provide valuable information for theoretical modeling establishment, fast material assessment and process optimization for MOSFETs with high-k gate dielectrics.
|
|
Published: 12 January 2015
|
|
PACS: |
77.55.D-
|
|
|
73.43.Fj
|
(Novel experimental methods; measurements)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
|
|
|
[1] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243 [2] Kim K 2010 Tech. Dig. Int. Electron. Devices Meet. (San Francisco USA 6–8 December 2010) p 1.1.1 [3] Kim K 2005 Tech. Dig. Int. Electron. Devices Meet. (Washington DC, USA 5–7 December 2005) p 333 [4] Fan J B, Liu H X, Gao B, Ma F, Zhuo Q Q and Hao Y 2012 Chin. Phys. B 21 087702 [5] Tan T T, Liu Z T and Li Y Y 2011 Chin. Phys. Lett. 28 086803 [6] Cartier E, Linder B P, Narayanan V And Paruchuri V K 2006 Tech. Dig. Int. Electron. Devices Meet. (San Francisco, USA 11–13 December 2006) p 4 [7] Zahid M B, Degraeve R, Pantisano L, Zhang J F and Groeseneken G 2007 IEEE 45th Annual International Reliability Physics Symposium (Phoenix, USA 15–19 April 2007) p 55 [8] Crupi I, Degraeve R, Govoreanu B, Brunco D P, Roussel P J and Van H J 2006 IEEE Trans. Device Mater. Reliab. 6 509 [9] Wang Y, Lee V and Cheung K P 2006 Tech. Dig. Int. Electron. Devices Meet. (San Francisco USA 11–13 December 2006) p 491 [10] Degraeve R, Cho M, Govoreanu B, Kaczer B, Zahid M B, Van H J, Jurczak M and Groeseneken G 2008 Tech. Dig. Int. Electron. Devices Meet. (San Francisco USA 15–17 December 2008) p 775 [11] Zhao C Z, Zahid M B, Zhang J F, Groeseneken G, Degraeve R and De G S 2005 Microelectron. Eng. 80 366 [12] Zheng X F, Zhang W D, Govoreanu B, Aguado D R, Zhang J F and Van H J 2010 IEEE Trans. Electron Devices 57 288 [13] Zheng X F, Zhang W D, Govoreanu B, Zhang J F and Van H J 2010 IEEE Trans. Electron Devices 57 2484 [14] Maes H E, Groeseneken G, Degraeve R, De Blauwe J and van den Bosch G 1998 Microelectron. Eng. 40 147 [15] Tse K, Liu D, Xiong K and Robertson J 2007 Microelectron. Eng. 84 2028 [16] Xiong K, Robertson J, Gibson M C and Clark S J 2005 Appl. Phys. Lett. 87 183505 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|