Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 127303    DOI: 10.1088/0256-307X/31/12/127303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Observation of a Flat Band in Silicene
FENG Ya, FENG Bao-Jie, XIE Zhuo-Jin, LI Wen-Bin, LIU Xu, LIU De-Fa, ZHAO Lin, CHEN Lan, ZHOU Xing-Jiang**, WU Ke-Hui**
Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
FENG Ya, FENG Bao-Jie, XIE Zhuo-Jin et al  2014 Chin. Phys. Lett. 31 127303
Download: PDF(1190KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The electronic structure of silicene on Ag(111) is studied by scanning tunneling microscopy and angle resolved photoemission spectroscopy. A flat band at 0.9 eV below the Fermi level is revealed. We find that the flat band is strongly suppressed near atomic defects, domain boundaries and step edges compared to that on the flat terraces. The discovery of the flat band and its sensitivity to local perturbations provides a new way to manipulate the electronic structure and properties of silicene.
Received: 21 October 2014      Published: 12 January 2015
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/127303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/127303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Ya
FENG Bao-Jie
XIE Zhuo-Jin
LI Wen-Bin
LIU Xu
LIU De-Fa
ZHAO Lin
CHEN Lan
ZHOU Xing-Jiang
WU Ke-Hui
[1] Tasaki H 1996 J. Stat. Phys. 84 535
[2] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[3] Mielke A 1999 Phys. Rev. Lett. 82 4312
[4] Shen Z X and Dessau D S 1995 Phys. Rep. 253 1
[5] Yang H B, Wang S C, Sekharan, A K P, Matsui H and Souma S, Sato T, Takahashi T, Takeuchi T, Campuzano J C, Jin R, Sales B C, Mandrus D, Wang Z and Ding H 2004 Phys. Rev. Lett. 92 246403
[6] Mielke A 1991 J. Phys. A: Math. Gen. 24 L73
[7] Mielke A 1991 J. Phys. A: Math. Gen. 24 3311
[8] Mielke A 1991 J. Phys. A: Math. Gen. 24 4335
[9] Nita M, Ostahie B and Aldea A 2013 Phys. Rev. B 87 125428
[10] Leykam D, Flach S, Bahat Treidel O and Desyatnikov A S 2013 Phys. Rev. B 88 224203
[11] Sun K, Gu Z, Katsura H and Sarma S D 2011 Phys. Rev. Lett. 106 236803
[12] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[13] Bergholtz E J and Liu Z 2013 Int. J. Mod. Phys. B 27 1330017
[14] Liu Z, Bergholtz E, Fan H and Lauchli A M 2012 Phys. Rev. Lett. 109 186805
[15] GuzmanVerri G G and Voon L C L Y 2007 Phys. Rev. B 76 075131
[16] Cahangirov S, Topsakal M, Aktürk E, SahinH and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[17] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[18] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[19] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[20] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[21] Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A and Gao H J 2013 Nano Lett. 13 685
[22] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and YamadaTakamura Y 2012 Phys. Rev. Lett. 108 245501
[23] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[24] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2013 Phys. Rev. Lett. 110 229702
[25] Feng B, Li H, Liu C C, Shao T N, Cheng P, Yao Y, Meng S, Chen L and Wu K 2013 ACS Nano 7 9049
[26] Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
[27] Chen L, Feng B and Wu K 2013 Appl. Phys. Lett. 102 081602
[28] Liu G, Wang G, Zhu Y, Zhang H, Zhang G, Wang X, Zhou Y, Zhang W, Liu H, Zhao L, Meng J, Dong X, Chen C, Xu Z and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[29] Zhao L et al to be published
[30] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[31] Liu G, Wu M S, Ouyang C Y and Xu B 2012 Europhys. Lett. 99 17010
[32] Kaloni T P, Cheng Y C and Schwingenschlogl U 2013 J. Appl. Phys. 113 104305
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 127303
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 127303
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 127303
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 127303
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 127303
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 127303
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 127303
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 127303
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 127303
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 127303
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 127303
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 127303
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 127303
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 127303
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 127303
Viewed
Full text


Abstract