Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 120504    DOI: 10.1088/0256-307X/31/12/120504
GENERAL |
Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation
CHEN Hai, ZHOU Zi-Xiang**
School of Mathematical Sciences, Fudan University, Shanghai 200433
Cite this article:   
CHEN Hai, ZHOU Zi-Xiang 2014 Chin. Phys. Lett. 31 120504
Download: PDF(1113KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Darboux transformation with a double spectral parameter for the Myrzakulov-I equation is obtained by taking a suitable limit of the parameters. The globalness of the derived solutions is proved.
Published: 12 January 2015
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/120504       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/120504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Hai
ZHOU Zi-Xiang
[1] Anco S C and Myrzakulov R 2010 J. Geom. Phys. 60 1576
[2] Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 J. Phys. A 31 9535
[3] Martina L, Myrzakul K, Myrzakulov R and Soliani G 2001 J. Math. Phys. 42 1397
[4] Myrzakulov R, Vijayalakshmi S, Nugmanovaa G N and Lakshmanan M 1997 Phys. Lett. A 233 391
[5] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems (Dordrecht: Springer)
[6] Chen C and Zhou Z X 2009 Chin. Phys. Lett. 26 080504
[7] Drazin P G and Johnson R S 1989 Solitons: An Introduction (Cambridge: Cambridge University Press)
[8] Song Q F and Zhou Z X 2005 Commun. Theor. Phys. 44 977
[9] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[10] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[11] He J S, Xu S W and Porseizan K 2012 Phys. Rev. E 86 066603
[12] Tao Y S, He J S and Porsezian K 2013 Chin. Phys. B 22 074210
[13] Zhang Y, Nie X J and Zha Q L 2014 Chin. Phys. Lett. 31 060201
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 120504
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 120504
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 120504
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 120504
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 120504
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 120504
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 120504
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 120504
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120504
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120504
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120504
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 120504
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 120504
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 120504
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 120504
Viewed
Full text


Abstract