Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 120503    DOI: 10.1088/0256-307X/31/12/120503
GENERAL |
Periodic States in Chaotic R?ssler Oscillators with On-Off Coupling
CHU Shuang-Tian, LIANG Xiao-Ming, LÜ Hua-Ping**
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116
Cite this article:   
CHU Shuang-Tian, LIANG Xiao-Ming, Lü Hua-Ping 2014 Chin. Phys. Lett. 31 120503
Download: PDF(874KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It has been revealed that two coupled chaotic R?ssler oscillators can transit to a period-5 splay state in an extremely weak coupling region [Zhan et al., Phys. Rev. Lett. 86 (2001) 1510]. Here we show that with further increase of coupling, two other coupling regions exist that may induce the period-4 splay state and period-5 synchronous state. Using an on-off coupling strategy, we find that the coupling regions for inducing period-5 states can be significantly extended and the extending effect is regulated by the match of two time scales: one is of the on-off coupling and the other is of the individual R?ssler oscillator. We then compare the sensitivity of the periodic states with the initial conditions of the oscillators. We also analyze the mechanism behind these two new types of periodic states.
Published: 12 January 2015
PACS:  05.45.Ra (Coupled map lattices)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/120503       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/120503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHU Shuang-Tian
LIANG Xiao-Ming
Lü Hua-Ping
[1] Pikovsky A et al 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[2] Boccaletti S et al 2006 Phys. Rep. 424 175
[3] Arenas A et al 2008 Phys. Rep. 469 93
[4] Zheng Z et al 1998 Phys. Rev. Lett. 81 5318
[5] Wang W et al 2000 Phys. Rev. Lett. 84 2610
[6] Popovych O V et al 2011 Phys. Rev. Lett. 107 228102
[7] Hou Z et al 2008 Chin. Phys. Lett. 25 3875
[8] Li J 2008 Chin. Phys. Lett. 25 413
[9] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[10] Zhang X et al 2006 Phys. Rev. E 74 015202(R)
[11] Liang X et al 2008 Chin. Phys. Lett. 25 409
[12] Zhan M et al 2001 Phys. Rev. Lett. 86 1510
[13] He D et al 2001 Physica D 156 314
[14] He Z et al 2013 Chaos 23 043139
[15] Wei G W and Zhao S 2002 Phys. Rev. E 65 056210
[16] Gong P and van Leeuwen C 2007 Phys. Rev. Lett. 98 048104
[17] Frasca M et al 2008 Phys. Rev. Lett. 100 044102
[18] Liang X et al 2009 Phys. Rev. E 80 066202
[19] Chen L et al 2009 Phys. Rev. E 79 045101(R)
[20] Liu Z 2010 Phys. Rev. E 81 016110
[21] Abrams D M et al 2008 Phys. Rev. Lett. 101 084103
Related articles from Frontiers Journals
[1] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 120503
[2] ZHUANG Yong, LIU Run-Ran, YANG Han-Xin, SHI Dong-Mei, WANG Bing-Hong,. Accelerating Consensus by Preferential Words in the Naming Game[J]. Chin. Phys. Lett., 2010, 27(10): 120503
[3] SHEN Yu, HOU Zhong-Huai, XIN Hou-Wen. Synchronization and Pattern Dynamics of Coupled Chaotic Maps on Complex Networks[J]. Chin. Phys. Lett., 2008, 25(11): 120503
[4] LIANG Xiao-Ming, Lü Hua-Ping, LIU Zong-Hua. Self-Organization in Coupled Map Scale-Free Networks[J]. Chin. Phys. Lett., 2008, 25(2): 120503
[5] LI Jing-Hui. Multi-Synchronization Caused by Uniform Disorder for Globally Coupled Maps[J]. Chin. Phys. Lett., 2008, 25(2): 120503
[6] ZHAO Dan, LIU Zeng-Rong, WANG Jia-Zeng. Duplication: a Mechanism Producing Disassortative Mixing Networks in Biology[J]. Chin. Phys. Lett., 2007, 24(10): 120503
[7] LÜ, Hua-Ping, WANG Shi-Hong, LI Xiao-Wen, TANG Guo-Ning, KUANG Jin-Yu, YE Wei-Ping, HU Gang,. A Spatiotemporal-Chaos-Based Cryptosystem Taking Advantage of Both Synchronous and Self-Synchronizing Schemes[J]. Chin. Phys. Lett., 2004, 21(6): 120503
Viewed
Full text


Abstract