Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 120502    DOI: 10.1088/0256-307X/31/12/120502
GENERAL |
Harmonic Noise-Induced Resonant Passing in an Inverse Harmonic Potential
HAN Jie, BAO Jing-Dong**
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
HAN Jie, BAO Jing-Dong 2014 Chin. Phys. Lett. 31 120502
Download: PDF(477KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The problem of a Brownian particle driven by harmonic noise passing over the saddle point in an inverse harmonic potential is studied. The passing probability over the saddle point is obtained analytically. The stationary passing probability is found to arrive at its maximal value when the frequency parameter of the harmonic noise is close to the frequency of the inverse harmonic potential, which results in a resonance phenomenon. With an increase in the frequency parameter of noise, the Brownian particle will recross the barrier, thereby increasing the escape rate and resulting in a decrease in the passing probability.
Published: 12 January 2015
PACS:  05.40.Jc (Brownian motion)  
  02.50.Ey (Stochastic processes)  
  05.40.Ca (Noise)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/120502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Jie
BAO Jing-Dong
[1] Kramers H A 1940 Phys. (Utrecht) 7 284
[2] H?nggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251
[3] Gammaitoni L, H?nggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[4] Van den Broeck C, Parrondo J M R and Toral R 1994 Phys. Rev. Lett. 73 3395
[5] Fuentes M A, Horacio S W and Toral R 2002 Physica A 303 91
[6] Li J H and Huang Z Q 1996 Phys. Rev. E 53 3315
[7] Bag B C 2002 Phys. Rev. E 66 026122
[8] Daems D and Nicolis G 1999 Phys. Rev. E 59 4000
[9] Aritomo Y, Wada T, Ohta M and Abe Y 1997 Phys. Rev. C 55 R1011
[10] ?wiatecki W J, Siwek-Wilczyńska K and Wilczyński J 2005 Phys. Rev. C 71 014602
[11] Abe Y, Boilley D, Giraud B G and Wada T 2000 Phys. Rev. E 61 1125
[12] Boilley D, Abe Y and Bao J D 2003 Eur. Phys. J. A 18 627
[13] Schimansky-Geier L and Zülicke Ch 1990 Z. Phys. B: Condens. Matter 79 451
[14] Einchcomb S J B and McKane A J 1994 Phys. Rev. E 49 259
[15] Dykman M I, McClintock P V E, Stein N D and Stocks N G 1991 Phys. Rev. Lett. 67 933
[16] Dykman M I, Mannella R, McClintock P V E, Stein N D and Stocks N G 1993 Phys. Rev. E 47 3996
[17] Dykman M I 1990 Phys. Rev. A 42 2020
[18] Millonas M and Dykman M I 1994 Phys. Lett. A 185 65
[19] Bartussek R, H?nggi P, Lindner B and Schimansky-Geier L 1997 Physica D 109 17
[20] Arrayás M, Mannella R, McClintock P V E, McKane A J and Stein N D 2000 Phys. Rev. E 61 139
[21] M I Dykman, Mannella R, McClintock P V E and Stocks N G 1992 Phys. Rev. Lett. 68 2985
[22] Yu Y and Han S Y 2003 Phys. Rev. Lett. 91 127003
[23] Li R, Hu G, Yang C Y, Wen X D, Qing G R and Zhu H J 1995 Phys. Rev. E 51 3964
[24] Abe Y, Shen C W, Kosenko G, Boilley D and Giraud B G 2008 Int. J. Mod. Phys. E 17 2214
[25] Boilley D and Lallouet Y 2006 J. Stat. Phys. 125 473
[26] Bao J D and Zhuo Y Z 2003 Phys. Rev. C 67 064606
[27] Yilmaz B, Ayik S, Abe Y and Boilley D 2008 Phys. Rev. E 77 011121
[28] Bao J D, Song Y L, Ji Q and Zhuo Y Z 2005 Phys. Rev. E 72 011113
Related articles from Frontiers Journals
[1] Qingqing Yin, Yunyun Li, Fabio Marchesoni, Debajyoti Debnath, and Pulak K. Ghosh. Excess Diffusion of a Driven Colloidal Particle in a Convection Array[J]. Chin. Phys. Lett., 2021, 38(4): 120502
[2] An Zhou, Li-Yan Qiao, Gui-Na Wei, Zhou-Ting Jiang, Ye-Hua Zhao. Self-Assembly of Dimer Motors under Confined Conditions[J]. Chin. Phys. Lett., 2020, 37(5): 120502
[3] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 120502
[4] Roumen Tsekov. Brownian Markets[J]. Chin. Phys. Lett., 2013, 30(8): 120502
[5] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 120502
[6] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 120502
[7] LIU Jian, FAN Jian-Fen**. Relationship between the Permeation-Diffusion Parameters of a Single-File Channel[J]. Chin. Phys. Lett., 2012, 29(1): 120502
[8] KANG Yan-Mei, JIANG Yao-Lin. Long-Time Dynamic Response and Stochastic Resonance of Subdiffusive Overdamped Bistable Fractional Fokker--Planck Systems[J]. Chin. Phys. Lett., 2008, 25(10): 120502
[9] BAI Zhan-Wu. Noise-Induced Phase Transition: Zero-Dimensional Brownian Particles Varying between Ergodicity and Nonergodicity[J]. Chin. Phys. Lett., 2008, 25(4): 120502
[10] XIE Hui-Zhang, AI Bao-Quan, LIU Xue-Mei, CHENG Xiao-Bo, LIU Liang-Gang, LI Zhi-Bing. Particle Transport with Asymmetric Unbiased Forces and Entropic Barrier[J]. Chin. Phys. Lett., 2007, 24(12): 120502
[11] ZHANG Jia-Lin, YU Hong-Wei. Lorentz Invariance and Brownian Motion of Test Particles with Constant Classical Velocity in Electromagnetic Vacuum[J]. Chin. Phys. Lett., 2005, 22(12): 120502
[12] AI Bao-Quan, XIE Hui-Zhang, LIU Liang-Gang. Current Inversion in a Temperature Ratchet with Asymmetric Unbiased External Forces[J]. Chin. Phys. Lett., 2005, 22(11): 120502
[13] BAO Jing-Dong, BAI Zhan-Wu. Ballistic Diffusion of a Charged Particle in a Blackbody Radiation Field[J]. Chin. Phys. Lett., 2005, 22(8): 120502
[14] YANG Ming, LI Xiang-Lian, CAO Li, , WU Da-Jin,. Coherence Resonance in the System with Periodical Potential and Driven by Correlated Noises[J]. Chin. Phys. Lett., 2004, 21(7): 120502
[15] HU Mao-Bin, WU Qing-Song, JIANG Rui. Size Segregation in a Vibrated Tilted Compartmentalized Granular Chamber[J]. Chin. Phys. Lett., 2003, 20(7): 120502
Viewed
Full text


Abstract