GENERAL |
|
|
|
|
Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure |
HAO Qing-Yang, JIN Ning-De**, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng |
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072
|
|
Cite this article: |
HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng et al 2014 Chin. Phys. Lett. 31 120501 |
|
|
Abstract We first employ multi-scale time asymmetry (MSA) to analyze typical chaotic signals from Schuster maps and indicate that the MSA method can characterize the distinct time asymmetry of chaotic time series. Then we propose a modified MSA method, i.e., multi-scale weighted time asymmetry, and a novel time asymmetry index to investigate fractal Brownian motion signals and demonstrate its effects on discriminating between fractal signals with different Hurst exponents. Considering that the dynamic behavior of slug flow exhibits chaotic features, we apply the MSA method to analyze experimental signals from a gas-liquid two-phase flow and find that slug flow presents a unique time asymmetric structure. In addition, we further explore the mechanism leading to the formation of time asymmetry in terms of adaptive optimal kernel time-frequency representation. The results suggest that the MSA method can be a useful tool for detecting the complex flow structure underlying a gas-liquid two-phase flow.
|
|
Published: 12 January 2015
|
|
|
|
|
|
[1] Dukler A E and Hubbard M G 1975 Ind. Eng. Chem. Fundam. 14 337 [2] Zhang H Q et al 2003 Int. J. Multiphase Flow 29 97 [3] Taitel Y and Dukler A E 1977 Int. J. Multiphase Flow 3 585 [4] Guet S et al 2006 Chem. Eng. Sci. 61 7336 [5] Wang X et al 2006 Chin. J. Chem. Eng. 14 626 [6] Abdul-Majeed G H and Al-Mashat A M 2000 J. Pet. Sci. Eng. 27 59 [7] Taha T and Cui Z F 2006 Chem. Eng. Sci. 61 665 [8] Gao S et al 2012 Acta Phys. Sin. 61 104701 (in Chinese) [9] Buetehorn S et al 2011 J. Membr. Sci. 384 184 [10] Daw C S, Finney C E A, Vasudevan M, van Goor N A, Nguyen K, Bruns D D, Kostelich E J, Grebogi C, Ott E and Yorke J A 1995 Phys. Rev. Lett. 75 2308 [11] Franca F, Acikgoz M, Lahey R T and Clausse A 1991 Int. J. Multiphase Flow 17 545 [12] van Hout R, Barnea D and Shemer L 2001 Int. J. Multiphase Flow 27 1579 [13] Yun J X, Lei Q, Zhang S H, Shen S C and Yao K J 2010 Chem. Eng. Sci. 65 5256 [14] Liu Y P, Zhang H and Wang J 2008 J. Shanghai Jiaotong Univ. 42 1247 (in Chinese) [15] Zhang C T, Ma Q L and Peng H 2010 Acta Phys. Sin. 59 7623 (in Chinese) [16] He W P, He T, Cheng H Y, Zhang W and Wu Q 2011 Acta Phys. Sin. 60 049202 (in Chinese) [17] Shen W and Wang J 2011 Acta Phys. Sin. 60 118702 (in Chinese) [18] S ?ther G, Bendiksen K, Müller J and Fr?land E 1990 Int. J. Multiphase Flow 16 1117 [19] Sun B, Wang E P and Zheng Y J 2011 Acta Phys. Sin. 60 014701 (in Chinese) [20] Li H W, Zhou Y L, Wang S Y and Sun B 2013 Acta Phys. Sin. 62 140505 (in Chinese) [21] Gao Z K and Jin N D 2012 Physica A 391 3005 [22] Costa M, Goldberger A L and Peng C K 2005 Phys. Rev. Lett. 95 198102 [23] Costa M, Peng C K and Goldberger A L 2008 Cardiovasc. Eng. 8 88 [24] Porporato A, Rigby J R and Daly E 2007 Phys. Rev. Lett. 98 094101 [25] Cammarota C and Rogora E 2007 Chaos Solitons Fractals 32 1649 [26] Casali K R, Casali A G, Montano N, Irigoyen M C, Macagnan F, Guzzetti S and Porta A 2008 Phys. Rev. E 77 066204 [27] Hou F Z, Zhuang J J, Bian C H, Tong T J, Chen Y, Yin J, Qiu X J and Ning X B 2010 Physica A 389 754 [28] Hou F Z, Ning X B, Zhuang J J, Huang X L, Fu M J and Bian C H 2011 Med. Eng. Phys. 33 633 [29] Zhou T T, Jin N D, Gao Z K and Luo Y B 2012 Acta Phys. Sin. 61 030506 (in Chinese) [30] Zheng G B and Jin N D 2009 Acta Phys. Sin. 58 4485 (in Chinese) [31] Jones D L and Baraniuk R G 1995 IEEE Trans. Signal Process. 43 2361 [32] Sun B, Wang E P, Ding Y, Bai H Z and Huang Y M 2011 Chin. J. Chem. Eng. 19 243 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|