Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 120501    DOI: 10.1088/0256-307X/31/12/120501
GENERAL |
Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure
HAO Qing-Yang, JIN Ning-De**, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072
Cite this article:   
HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng et al  2014 Chin. Phys. Lett. 31 120501
Download: PDF(845KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We first employ multi-scale time asymmetry (MSA) to analyze typical chaotic signals from Schuster maps and indicate that the MSA method can characterize the distinct time asymmetry of chaotic time series. Then we propose a modified MSA method, i.e., multi-scale weighted time asymmetry, and a novel time asymmetry index to investigate fractal Brownian motion signals and demonstrate its effects on discriminating between fractal signals with different Hurst exponents. Considering that the dynamic behavior of slug flow exhibits chaotic features, we apply the MSA method to analyze experimental signals from a gas-liquid two-phase flow and find that slug flow presents a unique time asymmetric structure. In addition, we further explore the mechanism leading to the formation of time asymmetry in terms of adaptive optimal kernel time-frequency representation. The results suggest that the MSA method can be a useful tool for detecting the complex flow structure underlying a gas-liquid two-phase flow.
Published: 12 January 2015
PACS:  05.45.Tp (Time series analysis)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/120501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/120501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAO Qing-Yang
JIN Ning-De
HAN Yun-Feng
GAO Zhong-Ke
ZHAI Lu-Sheng
[1] Dukler A E and Hubbard M G 1975 Ind. Eng. Chem. Fundam. 14 337
[2] Zhang H Q et al 2003 Int. J. Multiphase Flow 29 97
[3] Taitel Y and Dukler A E 1977 Int. J. Multiphase Flow 3 585
[4] Guet S et al 2006 Chem. Eng. Sci. 61 7336
[5] Wang X et al 2006 Chin. J. Chem. Eng. 14 626
[6] Abdul-Majeed G H and Al-Mashat A M 2000 J. Pet. Sci. Eng. 27 59
[7] Taha T and Cui Z F 2006 Chem. Eng. Sci. 61 665
[8] Gao S et al 2012 Acta Phys. Sin. 61 104701 (in Chinese)
[9] Buetehorn S et al 2011 J. Membr. Sci. 384 184
[10] Daw C S, Finney C E A, Vasudevan M, van Goor N A, Nguyen K, Bruns D D, Kostelich E J, Grebogi C, Ott E and Yorke J A 1995 Phys. Rev. Lett. 75 2308
[11] Franca F, Acikgoz M, Lahey R T and Clausse A 1991 Int. J. Multiphase Flow 17 545
[12] van Hout R, Barnea D and Shemer L 2001 Int. J. Multiphase Flow 27 1579
[13] Yun J X, Lei Q, Zhang S H, Shen S C and Yao K J 2010 Chem. Eng. Sci. 65 5256
[14] Liu Y P, Zhang H and Wang J 2008 J. Shanghai Jiaotong Univ. 42 1247 (in Chinese)
[15] Zhang C T, Ma Q L and Peng H 2010 Acta Phys. Sin. 59 7623 (in Chinese)
[16] He W P, He T, Cheng H Y, Zhang W and Wu Q 2011 Acta Phys. Sin. 60 049202 (in Chinese)
[17] Shen W and Wang J 2011 Acta Phys. Sin. 60 118702 (in Chinese)
[18] S ?ther G, Bendiksen K, Müller J and Fr?land E 1990 Int. J. Multiphase Flow 16 1117
[19] Sun B, Wang E P and Zheng Y J 2011 Acta Phys. Sin. 60 014701 (in Chinese)
[20] Li H W, Zhou Y L, Wang S Y and Sun B 2013 Acta Phys. Sin. 62 140505 (in Chinese)
[21] Gao Z K and Jin N D 2012 Physica A 391 3005
[22] Costa M, Goldberger A L and Peng C K 2005 Phys. Rev. Lett. 95 198102
[23] Costa M, Peng C K and Goldberger A L 2008 Cardiovasc. Eng. 8 88
[24] Porporato A, Rigby J R and Daly E 2007 Phys. Rev. Lett. 98 094101
[25] Cammarota C and Rogora E 2007 Chaos Solitons Fractals 32 1649
[26] Casali K R, Casali A G, Montano N, Irigoyen M C, Macagnan F, Guzzetti S and Porta A 2008 Phys. Rev. E 77 066204
[27] Hou F Z, Zhuang J J, Bian C H, Tong T J, Chen Y, Yin J, Qiu X J and Ning X B 2010 Physica A 389 754
[28] Hou F Z, Ning X B, Zhuang J J, Huang X L, Fu M J and Bian C H 2011 Med. Eng. Phys. 33 633
[29] Zhou T T, Jin N D, Gao Z K and Luo Y B 2012 Acta Phys. Sin. 61 030506 (in Chinese)
[30] Zheng G B and Jin N D 2009 Acta Phys. Sin. 58 4485 (in Chinese)
[31] Jones D L and Baraniuk R G 1995 IEEE Trans. Signal Process. 43 2361
[32] Sun B, Wang E P, Ding Y, Bai H Z and Huang Y M 2011 Chin. J. Chem. Eng. 19 243
Related articles from Frontiers Journals
[1] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 120501
[2] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 120501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 120501
[4] Yi Ji, Hong-Bo Xie. Generalized Multivariate Singular Spectrum Analysis for Nonlinear Time Series De-Noising and Prediction[J]. Chin. Phys. Lett., 2017, 34(12): 120501
[5] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 120501
[6] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 120501
[7] Jian Jiang, Hong-Bo Xie. Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy[J]. Chin. Phys. Lett., 2016, 33(10): 120501
[8] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 120501
[9] ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng, ZHANG Yi. A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology[J]. Chin. Phys. Lett., 2015, 32(09): 120501
[10] QU Hua, MA Wen-Tao, ZHAO Ji-Hong, CHEN Ba-Dong. Kernel Least Mean Kurtosis Based Online Chaotic Time Series Prediction[J]. Chin. Phys. Lett., 2013, 30(11): 120501
[11] FAN Chun-Ling, JIN Ning-De, CHEN Xiu-Ting, GAO Zhong-Ke. Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics[J]. Chin. Phys. Lett., 2013, 30(9): 120501
[12] ZHANG Xin-Wang, JIN Ning-De, GAO Zhong-Ke, ZHAI Lu-Sheng . Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics[J]. Chin. Phys. Lett., 2013, 30(5): 120501
[13] JIANG Jian, WANG Ru, Pezeril Michel, Wang Qiuping Alexandre. Long Division Unites or Long Union Divides: a Model for Social Network Evolution[J]. Chin. Phys. Lett., 2013, 30(3): 120501
[14] YAN Chuan-Kui, WANG Ru-Bin. Non-identical Neural Network Synchronization Study Based on an Adaptive Learning Rule of Synapses[J]. Chin. Phys. Lett., 2012, 29(9): 120501
[15] QU Jing-Yi, and WANG Ru-Bin. Dynamics of a Cortical Neural Network Based on a Simple Model[J]. Chin. Phys. Lett., 2012, 29(8): 120501
Viewed
Full text


Abstract